On the accuracy of the poissonisation in the infinite occupancy scheme
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1035-1045.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic accuracy of the poissonisation in the infinite occupancy scheme. Some of the results are obtained for integer-valued random variables having a regularly varying distribution.
Keywords: infinite urn/cell scheme, asymptotic upper bounds
Mots-clés : poissonisation.
@article{SEMR_2021_18_2_a19,
     author = {M. Chebunin},
     title = {On the accuracy of the poissonisation in the infinite occupancy scheme},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1035--1045},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a19/}
}
TY  - JOUR
AU  - M. Chebunin
TI  - On the accuracy of the poissonisation in the infinite occupancy scheme
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1035
EP  - 1045
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a19/
LA  - en
ID  - SEMR_2021_18_2_a19
ER  - 
%0 Journal Article
%A M. Chebunin
%T On the accuracy of the poissonisation in the infinite occupancy scheme
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1035-1045
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a19/
%G en
%F SEMR_2021_18_2_a19
M. Chebunin. On the accuracy of the poissonisation in the infinite occupancy scheme. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1035-1045. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a19/

[1] A.D. Barbour, “Univariate approximations in the infinite occupancy scheme”, ALEA Lat. Am. J. Probab. Math. Stat., 6 (2009), 415–433 | MR

[2] A.D. Barbour, A.V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14 (2009), 365–384 | MR | Zbl

[3] A. Ben-Hamou, S. Boucheron, M.I. Ohannessian, “Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications”, Bernoulli, 23:1 (2017), 249–287 | DOI | MR | Zbl

[4] M.G. Chebunin, “Estimation of the parameters of probability models by the number of different elements in a sample”, Sib. Zh. Ind. Mat., 17:3 (2014), 135–147 | MR | Zbl

[5] M. Chebunin, A. Kovalevskii, “Functional central limit theorems for certain statistics in an infinite urn scheme”, Statist. Probab. Lett., 119 (2016), 344–348 | DOI | MR | Zbl

[6] M. Chebunin, A. Kovalevskii, “Asymptotically normal estimators for Zipf's law”, Sankhya A, 81:2 (2019), 482–492 | DOI | MR | Zbl

[7] M. Chebunin, A. Kovalevskii, “A statistical test for the Zipf's law by deviations from the Heaps' law”, Sib. Électron. Mat. Izv., 16 (2019), 1822–1832 | DOI | MR | Zbl

[8] M. Dutko, “Central limit theorems for infinite urn models”, Ann. Probab., 17:3 (1989), 1255–1263 | DOI | MR | Zbl

[9] A. Gnedin, B. Hansen, J. Pitman, “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probab. Surv., 4 (2007), 146–171 | DOI | MR | Zbl

[10] J. Hoffmann, Y. Miao, X.C. Li, S.F. Xu, “Kolmogorov type law of the logarithm for arrays”, J. Theoret. Probab., 29:1 (2016), 32–47 | DOI | MR | Zbl

[11] H.-K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Probab., 36:3 (2008), 992–1022 | DOI | MR | Zbl

[12] S. Karlin, “Central limit theorems for certain infinite urn schemes”, J. Math. Mech., 17:4 (1967), 373–401 | Zbl

[13] S.H. Sung, “An analogue of Kolmogorov's law of the iterated logarithm for arrays”, Bull. Austral. Math. Soc., 54:2 (1996), 177–182 | DOI | MR | Zbl

[14] N.S. Zakrevskaya, A.P. Kovalevskii, “One-parameter probabilistic models of text statistics”, Sib. Zh. Ind. Mat., 4:2 (2001), 142–153 | MR | Zbl