Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a19, author = {M. Chebunin}, title = {On the accuracy of the poissonisation in the infinite occupancy scheme}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1035--1045}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a19/} }
TY - JOUR AU - M. Chebunin TI - On the accuracy of the poissonisation in the infinite occupancy scheme JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1035 EP - 1045 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a19/ LA - en ID - SEMR_2021_18_2_a19 ER -
M. Chebunin. On the accuracy of the poissonisation in the infinite occupancy scheme. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1035-1045. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a19/
[1] A.D. Barbour, “Univariate approximations in the infinite occupancy scheme”, ALEA Lat. Am. J. Probab. Math. Stat., 6 (2009), 415–433 | MR
[2] A.D. Barbour, A.V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14 (2009), 365–384 | MR | Zbl
[3] A. Ben-Hamou, S. Boucheron, M.I. Ohannessian, “Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications”, Bernoulli, 23:1 (2017), 249–287 | DOI | MR | Zbl
[4] M.G. Chebunin, “Estimation of the parameters of probability models by the number of different elements in a sample”, Sib. Zh. Ind. Mat., 17:3 (2014), 135–147 | MR | Zbl
[5] M. Chebunin, A. Kovalevskii, “Functional central limit theorems for certain statistics in an infinite urn scheme”, Statist. Probab. Lett., 119 (2016), 344–348 | DOI | MR | Zbl
[6] M. Chebunin, A. Kovalevskii, “Asymptotically normal estimators for Zipf's law”, Sankhya A, 81:2 (2019), 482–492 | DOI | MR | Zbl
[7] M. Chebunin, A. Kovalevskii, “A statistical test for the Zipf's law by deviations from the Heaps' law”, Sib. Électron. Mat. Izv., 16 (2019), 1822–1832 | DOI | MR | Zbl
[8] M. Dutko, “Central limit theorems for infinite urn models”, Ann. Probab., 17:3 (1989), 1255–1263 | DOI | MR | Zbl
[9] A. Gnedin, B. Hansen, J. Pitman, “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probab. Surv., 4 (2007), 146–171 | DOI | MR | Zbl
[10] J. Hoffmann, Y. Miao, X.C. Li, S.F. Xu, “Kolmogorov type law of the logarithm for arrays”, J. Theoret. Probab., 29:1 (2016), 32–47 | DOI | MR | Zbl
[11] H.-K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Probab., 36:3 (2008), 992–1022 | DOI | MR | Zbl
[12] S. Karlin, “Central limit theorems for certain infinite urn schemes”, J. Math. Mech., 17:4 (1967), 373–401 | Zbl
[13] S.H. Sung, “An analogue of Kolmogorov's law of the iterated logarithm for arrays”, Bull. Austral. Math. Soc., 54:2 (1996), 177–182 | DOI | MR | Zbl
[14] N.S. Zakrevskaya, A.P. Kovalevskii, “One-parameter probabilistic models of text statistics”, Sib. Zh. Ind. Mat., 4:2 (2001), 142–153 | MR | Zbl