Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a17, author = {A. I. Budkin}, title = {Locally free subgroups of one-relator groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1757--1770}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a17/} }
A. I. Budkin. Locally free subgroups of one-relator groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1757-1770. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a17/
[1] A.I. Budkin, “Quasi-identities in a free group”, Algebra Logic, 15:1 (1976), 25–33 | DOI | MR | Zbl
[2] H.B. Griffiths, “The fundamental group of a surface, and theorem of Shreier”, Acta Math., 110 (1963), 1–17 | DOI | MR | Zbl
[3] A.I. Budkin, To the theory of quasivarieties of algebraic systems, Dissertation for the degree of Candidate of Physical and Mathematical Sciences, Novosibirsk, 1977 | Zbl
[4] A.I. Budkin, Q-theories of finitely generated groups, LAP LAMBERT Academic Publishing, 2012
[5] B. Baumslag, “Generalized free products whose two-generator subgroups are free”, J. Lond. Math. Soc., 43 (1968), 601–606 | DOI | MR | Zbl
[6] G. Baumslag, P.B. Shalen, “Groups whose three-generator subgroups are free”, Bull. Aust. Math. Soc., 40:2 (1989), 163–174 | DOI | MR | Zbl
[7] V.S. Guba, “Conditions under which 2-generated subgroups in groups with small cancellation are free”, Sov. Math., 30:7 (1986), 14–24 | MR | Zbl
[8] B. Fine, A.M Gaglione, A. Myasnikov, G. Rosenberger, D. Spellman, “A classification of fully residually free groups of rank three or less”, J. Algebra, 200:2 (1998), 571–605 | DOI | MR | Zbl
[9] V.S. Guba, “A finitely generated simple group with free $2$-generated subgroups”, Sib. Math. J., 27:5 (1986), 670–684 | DOI | MR | Zbl
[10] B. Fine, F. Röhl, G. Rosenberger, “On HNN-groups whose three-generator subgroups are free”, Infinite groups and group rings, Proceedings of the AMS special session (Tuscaloosa, AL, USA, March 13–14, 1992), eds. Corson J. M. et al., World Scientific, Singapore, 1993, 13–37 | DOI | MR | Zbl
[11] B. Fine, A. Gaglione, G. Rosenberger, D. Spellman, “n-free groups and questions about universally free groups”, Groups '93 Galway/St. Andrews', Proceedings of the international conference (Galway, Ireland, August 1–14, 1993), v. 1, Lond. Math. Soc., Lect. Note Ser., 211, eds. Campbell C.M. et al., Cambridge Univ. Press, Cambridge, 1995, 191–204 | MR | Zbl
[12] V.N. Remeslennikov, “$\exists $-free groups and groups with a length function”, Proceedings of the conference on algebra, Second international conference on algebra dedicated to the memory of A.I. Shirshov (August 20–25, 1991, Barnaul, Russia), Contemp. Math., 184, eds. Bokut' L.A. et al., American Mathematical Society, 1995, 369–376 | DOI | MR | Zbl
[13] I. Bumagin, “On small cancellation k-generated groups with (k-1)-generated subgroups all free”, Int. J. Algebra Comput., 11:5 (2001), 507–524 | DOI | MR | Zbl
[14] G. Baumslag, “On generalized free products”, Math. Z., 78:4 (1962), 423–438 | DOI | MR | Zbl
[15] B. Fine, F. Rohl, G. Rosenberger, “Two-generator subgroups of certain HNN groups”, Contemp. Math., 109, 1990, 19–23 | DOI | MR | Zbl
[16] A.I. Budkin, “Levi classes generated by nilpotent groups”, Algebra Logic, 39:6 (2000), 363–369 | DOI | MR | Zbl
[17] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers, New York etc, 1966 | MR | Zbl
[18] A.I. Budkin, “The axiomatic rank of a quasivariate that contains a freely resolvable group”, Mat. Sb., N. Ser., 112:4 (1980), 647–655 | MR | Zbl