Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a14, author = {S. A. Badaev and B. S. Kalmurzayev and N. K. Mukash and A. A. Khamitova}, title = {Special classes of positive preorders}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1657--1666}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/} }
TY - JOUR AU - S. A. Badaev AU - B. S. Kalmurzayev AU - N. K. Mukash AU - A. A. Khamitova TI - Special classes of positive preorders JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1657 EP - 1666 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/ LA - en ID - SEMR_2021_18_2_a14 ER -
%0 Journal Article %A S. A. Badaev %A B. S. Kalmurzayev %A N. K. Mukash %A A. A. Khamitova %T Special classes of positive preorders %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1657-1666 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/ %G en %F SEMR_2021_18_2_a14
S. A. Badaev; B. S. Kalmurzayev; N. K. Mukash; A. A. Khamitova. Special classes of positive preorders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1657-1666. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/
[1] Yu.L. Ershov, “Positive equivalence”, Algebra Logic, 10:6 (1973), 378–394 | DOI | MR | Zbl
[2] C. Bernardi, A. Sorbi, “Classifying positive equivalence relations”, J. Symb. Log., 48:3 (1983), 529–538 | DOI | MR | Zbl
[3] A.H. Lachlan, “A note on positive equivalence relations”, Z. Math. Logik Grundlagen Math., 33:1 (1987), 43–46 | DOI | MR | Zbl
[4] S.A. Badaev, “On weakly pre-complete positive equivalences”, Sib. Math. J., 32:2 (1991), 321–323 | DOI | MR | Zbl
[5] S. Gao, P. Gerdes, “Computably enumerable equivalence relations”, Stud. Log., 67:1 (2001), 27–59 | DOI | MR | Zbl
[6] U. Andrews, S. Badaev, A. Sorbi, “A survey on universal computably enumerable equivalence relations”, Computability and complexity, Lect. Notes Comput. Sci., 10010, ed. Day A. et al., 2017, 418–451 | DOI | MR | Zbl
[7] U. Andrews, A. Sorbi, “Joins and meets in the structure of ceers”, Computability, 8:3–4 (2019), 193–241 | DOI | MR | Zbl
[8] N.A. Bazhenov, B.S. Kalmurzaev, “On dark computably enumerable relations”, Sib. Math. J., 59:1 (2018), 22–30 | DOI | MR | Zbl
[9] E. Fokina, B. Khoussainov, P. Semukhin, D. Turetsky, “Linear orders realised by c.e. equivalence relations”, J. Symb. Log., 81:2 (2016), 463–482 | DOI | MR | Zbl
[10] N. Bazhenov, M. Mustafa, F. Stephan, M. Yamaleev, “Boolean algebras realised by c.e. equivalence relations”, Sib. Életron. Mat. Izv., 14 (2017), 848–855 | MR | Zbl
[11] F. Montagna, A. Sorbi, “Universal recursion theoretic properties of R.E. preordered structures”, J. Symb. Log., 50 (1985), 397–406 | DOI | MR | Zbl
[12] A.I. Mal'tsev, “Constructive algebras. I”, Russ. Math. Surv., 16:3 (1961), 77–129 | DOI | Zbl
[13] S.A. Badaev, B.S. Kalmurzayev, D.K. Kabylzhanova, K.Sh. Abeshev, “Universal positive preorders”, News of the National Academy of Sciences of the Republic of Kazakhstan–Series Physico-Mathematical, 322:6 (2018), 49–53 | MR