Special classes of positive preorders
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1657-1666.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study positive preorders relative to computable reducibility. An approach is suggested to lift well-known notions from the theory of ceers to positive preorders. It is shown that each class of positive preoders of a special type (precomplete, $e$-complete, weakly precomplete, effectively finite precomplete, and effectively inseparable ones) contains infinitely many incomparable elements and has a universal object. We construct a pair of incomparable dark positive preorders that possess an infimum. It is shown that for every non-universal positive preorder $P$, there are infinitely many pairwise incomparable minimal weakly precomplete positive preorders that are incomparable with $P$.
Keywords: positive preorder, ceer, computable reducibility, precomplete, weakly precomplete, minimal preorder.
@article{SEMR_2021_18_2_a14,
     author = {S. A. Badaev and B. S. Kalmurzayev and N. K. Mukash and A. A. Khamitova},
     title = {Special classes of positive preorders},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1657--1666},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - B. S. Kalmurzayev
AU  - N. K. Mukash
AU  - A. A. Khamitova
TI  - Special classes of positive preorders
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1657
EP  - 1666
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/
LA  - en
ID  - SEMR_2021_18_2_a14
ER  - 
%0 Journal Article
%A S. A. Badaev
%A B. S. Kalmurzayev
%A N. K. Mukash
%A A. A. Khamitova
%T Special classes of positive preorders
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1657-1666
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/
%G en
%F SEMR_2021_18_2_a14
S. A. Badaev; B. S. Kalmurzayev; N. K. Mukash; A. A. Khamitova. Special classes of positive preorders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1657-1666. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/

[1] Yu.L. Ershov, “Positive equivalence”, Algebra Logic, 10:6 (1973), 378–394 | DOI | MR | Zbl

[2] C. Bernardi, A. Sorbi, “Classifying positive equivalence relations”, J. Symb. Log., 48:3 (1983), 529–538 | DOI | MR | Zbl

[3] A.H. Lachlan, “A note on positive equivalence relations”, Z. Math. Logik Grundlagen Math., 33:1 (1987), 43–46 | DOI | MR | Zbl

[4] S.A. Badaev, “On weakly pre-complete positive equivalences”, Sib. Math. J., 32:2 (1991), 321–323 | DOI | MR | Zbl

[5] S. Gao, P. Gerdes, “Computably enumerable equivalence relations”, Stud. Log., 67:1 (2001), 27–59 | DOI | MR | Zbl

[6] U. Andrews, S. Badaev, A. Sorbi, “A survey on universal computably enumerable equivalence relations”, Computability and complexity, Lect. Notes Comput. Sci., 10010, ed. Day A. et al., 2017, 418–451 | DOI | MR | Zbl

[7] U. Andrews, A. Sorbi, “Joins and meets in the structure of ceers”, Computability, 8:3–4 (2019), 193–241 | DOI | MR | Zbl

[8] N.A. Bazhenov, B.S. Kalmurzaev, “On dark computably enumerable relations”, Sib. Math. J., 59:1 (2018), 22–30 | DOI | MR | Zbl

[9] E. Fokina, B. Khoussainov, P. Semukhin, D. Turetsky, “Linear orders realised by c.e. equivalence relations”, J. Symb. Log., 81:2 (2016), 463–482 | DOI | MR | Zbl

[10] N. Bazhenov, M. Mustafa, F. Stephan, M. Yamaleev, “Boolean algebras realised by c.e. equivalence relations”, Sib. Életron. Mat. Izv., 14 (2017), 848–855 | MR | Zbl

[11] F. Montagna, A. Sorbi, “Universal recursion theoretic properties of R.E. preordered structures”, J. Symb. Log., 50 (1985), 397–406 | DOI | MR | Zbl

[12] A.I. Mal'tsev, “Constructive algebras. I”, Russ. Math. Surv., 16:3 (1961), 77–129 | DOI | Zbl

[13] S.A. Badaev, B.S. Kalmurzayev, D.K. Kabylzhanova, K.Sh. Abeshev, “Universal positive preorders”, News of the National Academy of Sciences of the Republic of Kazakhstan–Series Physico-Mathematical, 322:6 (2018), 49–53 | MR