Special classes of positive preorders
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1657-1666

Voir la notice de l'article provenant de la source Math-Net.Ru

We study positive preorders relative to computable reducibility. An approach is suggested to lift well-known notions from the theory of ceers to positive preorders. It is shown that each class of positive preoders of a special type (precomplete, $e$-complete, weakly precomplete, effectively finite precomplete, and effectively inseparable ones) contains infinitely many incomparable elements and has a universal object. We construct a pair of incomparable dark positive preorders that possess an infimum. It is shown that for every non-universal positive preorder $P$, there are infinitely many pairwise incomparable minimal weakly precomplete positive preorders that are incomparable with $P$.
Keywords: positive preorder, ceer, computable reducibility, precomplete, weakly precomplete, minimal preorder.
@article{SEMR_2021_18_2_a14,
     author = {S. A. Badaev and B. S. Kalmurzayev and N. K. Mukash and A. A. Khamitova},
     title = {Special classes of positive preorders},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1657--1666},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - B. S. Kalmurzayev
AU  - N. K. Mukash
AU  - A. A. Khamitova
TI  - Special classes of positive preorders
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1657
EP  - 1666
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/
LA  - en
ID  - SEMR_2021_18_2_a14
ER  - 
%0 Journal Article
%A S. A. Badaev
%A B. S. Kalmurzayev
%A N. K. Mukash
%A A. A. Khamitova
%T Special classes of positive preorders
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1657-1666
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/
%G en
%F SEMR_2021_18_2_a14
S. A. Badaev; B. S. Kalmurzayev; N. K. Mukash; A. A. Khamitova. Special classes of positive preorders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1657-1666. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a14/