Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1651-1656

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of a finite group $G$ is defined as follows. The vertex set of $\Gamma(G)$ is the set of all prime divisors of the order of $G$. Two distinct primes $r$ and $s$ regarded as vertices are adjacent in $\Gamma(G)$ if and only if there exists an element of order $rs$ in $G$. Suppose that $L\cong E_6(3)$ or $L\cong{}^2E_6(3)$. We prove that if $G$ is a finite group such that $\Gamma(G)=\Gamma(L)$, then $G\cong L$.
Keywords: finite group, the Gruenberg–Kegel graph, exceptional group of Lie type $E_6$.
Mots-clés : simple group
@article{SEMR_2021_18_2_a13,
     author = {A. P. Khramova and N. V. Maslova and V. V. Panshin and A. M. Staroletov},
     title = {Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by {Gruenberg--Kegel} graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1651--1656},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/}
}
TY  - JOUR
AU  - A. P. Khramova
AU  - N. V. Maslova
AU  - V. V. Panshin
AU  - A. M. Staroletov
TI  - Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1651
EP  - 1656
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/
LA  - en
ID  - SEMR_2021_18_2_a13
ER  - 
%0 Journal Article
%A A. P. Khramova
%A N. V. Maslova
%A V. V. Panshin
%A A. M. Staroletov
%T Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1651-1656
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/
%G en
%F SEMR_2021_18_2_a13
A. P. Khramova; N. V. Maslova; V. V. Panshin; A. M. Staroletov. Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1651-1656. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/