Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1651-1656.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of a finite group $G$ is defined as follows. The vertex set of $\Gamma(G)$ is the set of all prime divisors of the order of $G$. Two distinct primes $r$ and $s$ regarded as vertices are adjacent in $\Gamma(G)$ if and only if there exists an element of order $rs$ in $G$. Suppose that $L\cong E_6(3)$ or $L\cong{}^2E_6(3)$. We prove that if $G$ is a finite group such that $\Gamma(G)=\Gamma(L)$, then $G\cong L$.
Keywords: finite group, the Gruenberg–Kegel graph, exceptional group of Lie type $E_6$.
Mots-clés : simple group
@article{SEMR_2021_18_2_a13,
     author = {A. P. Khramova and N. V. Maslova and V. V. Panshin and A. M. Staroletov},
     title = {Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by {Gruenberg--Kegel} graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1651--1656},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/}
}
TY  - JOUR
AU  - A. P. Khramova
AU  - N. V. Maslova
AU  - V. V. Panshin
AU  - A. M. Staroletov
TI  - Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1651
EP  - 1656
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/
LA  - en
ID  - SEMR_2021_18_2_a13
ER  - 
%0 Journal Article
%A A. P. Khramova
%A N. V. Maslova
%A V. V. Panshin
%A A. M. Staroletov
%T Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1651-1656
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/
%G en
%F SEMR_2021_18_2_a13
A. P. Khramova; N. V. Maslova; V. V. Panshin; A. M. Staroletov. Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1651-1656. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/

[1] J.S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[2] W. Shi, “A characteristic property of $A_5$”, Journal of Southwest China Normal University (Natural Science Edition), 1986:3 (1986), 11–14 (in Chinese) | MR

[3] R. Brandl, W.J. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | MR | Zbl

[4] P.J. Cameron, N.V. Maslova, “Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph”, J. Algebra (to appear) | DOI

[5] A.S. Kondrat'ev, “Quasirecognition by the set of element orders of the groups $E_6(q)$ and ${^2}E_6(q)$”, Sib. Math. J., 48:6 (2007), 1001–1018 | DOI | Zbl

[6] M.A. Grechkoseeva, “Element orders in covers of finite simple groups of Lie type”, J. Algebra Appl., 14:4 (2015), 1550056 | DOI | MR | Zbl

[7] M.A. Zvezdina, “Spectra of automorphic extensions of finite simple exceptional groups of Lie type”, Algebra Logic, 55:5 (2016), 354–366 | DOI | MR | Zbl

[8] Z. Momen, B. Khosravi, “Quasirecognition of $E_6(q)$ by the orders of maximal abelian subgroups”, J. Algebra Appl., 17:7 (2018), 1850122 | DOI | MR | Zbl

[9] W. Guo, A.S. Kondrat'ev, N.V. Maslova, “Recognition of the group $E_6(2)$ by Gruenberg–Kegel graph”, Trudy Inst. Mat. Mekh. UrO RAN, 27, no. 4, 2021, 263–268 | DOI | MR

[10] A.S. Kondrat'ev, “Recognizability by prime graph of the group $^2E_6(2)$”, J. Math. Sci., New York, 259:4 (2021), 463–466 | DOI | MR | Zbl

[11] The Great Mathematical Workshop (July 12–17 and August 16–21, 2021) (with an intermodule work in between) http://mca.nsu.ru/bmm_english/

[12] A.V. Vasil'ev, “On connection between the structure of finite group and the properties of its prime graph”, Sib. Math. J., 46:3 (2005), 396–404 | DOI | Zbl

[13] A.M. Staroletov, “On recognition of alternating groups by prime graph”, Sib. Èlectron. Mat. Izv., 14 (2017), 994–1010 | MR | Zbl

[14] A.V. Vasil'ev, E.P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl

[15] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Èlectron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl

[16] A.V. Vasil'ev, E.P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group”, Algebra Logic, 50:4 (2011), 291–322 | DOI | MR | Zbl

[17] D. Gorenstein, R. Lyons, R. Solomon, “Chapter A: Almost simple K-groups”, The classification of the finite simple groups, v. I, Mathematical Surveys and Monographs, 40, American Mathematical Society, Providence, 1998 | MR | Zbl

[18] M.W. Liebeck, J. Saxl, G.M. Seitz, “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. Lond. Math. Soc., III. Ser., 65:2 (1992), 297–325 | DOI | MR | Zbl

[19] A.V. Zavarnitsine, “Finite groups with a five-component prime graph”, Sib. Math. J., 54:1 (2013), 40–46 | DOI | MR | Zbl

[20] A.A. Buturlakin, M.A. Grechkoseeva, “The cyclic structure of maximal tori of the finite classical groups”, Algebra Logic, 46:2 (2007), 73–89 | DOI | MR | Zbl

[21] D. Gorenstein, Finite groups, Harper Row, New York, 1968 | MR | Zbl

[22] R. Guralnick, P.H. Tiep, “Finite simple unisingular groups of Lie type”, J. Group Theory, 6:3 (2003), 271–310 | DOI | MR | Zbl