Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a13, author = {A. P. Khramova and N. V. Maslova and V. V. Panshin and A. M. Staroletov}, title = {Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by {Gruenberg--Kegel} graph}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1651--1656}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/} }
TY - JOUR AU - A. P. Khramova AU - N. V. Maslova AU - V. V. Panshin AU - A. M. Staroletov TI - Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1651 EP - 1656 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/ LA - en ID - SEMR_2021_18_2_a13 ER -
%0 Journal Article %A A. P. Khramova %A N. V. Maslova %A V. V. Panshin %A A. M. Staroletov %T Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1651-1656 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/ %G en %F SEMR_2021_18_2_a13
A. P. Khramova; N. V. Maslova; V. V. Panshin; A. M. Staroletov. Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1651-1656. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a13/
[1] J.S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl
[2] W. Shi, “A characteristic property of $A_5$”, Journal of Southwest China Normal University (Natural Science Edition), 1986:3 (1986), 11–14 (in Chinese) | MR
[3] R. Brandl, W.J. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | MR | Zbl
[4] P.J. Cameron, N.V. Maslova, “Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph”, J. Algebra (to appear) | DOI
[5] A.S. Kondrat'ev, “Quasirecognition by the set of element orders of the groups $E_6(q)$ and ${^2}E_6(q)$”, Sib. Math. J., 48:6 (2007), 1001–1018 | DOI | Zbl
[6] M.A. Grechkoseeva, “Element orders in covers of finite simple groups of Lie type”, J. Algebra Appl., 14:4 (2015), 1550056 | DOI | MR | Zbl
[7] M.A. Zvezdina, “Spectra of automorphic extensions of finite simple exceptional groups of Lie type”, Algebra Logic, 55:5 (2016), 354–366 | DOI | MR | Zbl
[8] Z. Momen, B. Khosravi, “Quasirecognition of $E_6(q)$ by the orders of maximal abelian subgroups”, J. Algebra Appl., 17:7 (2018), 1850122 | DOI | MR | Zbl
[9] W. Guo, A.S. Kondrat'ev, N.V. Maslova, “Recognition of the group $E_6(2)$ by Gruenberg–Kegel graph”, Trudy Inst. Mat. Mekh. UrO RAN, 27, no. 4, 2021, 263–268 | DOI | MR
[10] A.S. Kondrat'ev, “Recognizability by prime graph of the group $^2E_6(2)$”, J. Math. Sci., New York, 259:4 (2021), 463–466 | DOI | MR | Zbl
[11] The Great Mathematical Workshop (July 12–17 and August 16–21, 2021) (with an intermodule work in between) http://mca.nsu.ru/bmm_english/
[12] A.V. Vasil'ev, “On connection between the structure of finite group and the properties of its prime graph”, Sib. Math. J., 46:3 (2005), 396–404 | DOI | Zbl
[13] A.M. Staroletov, “On recognition of alternating groups by prime graph”, Sib. Èlectron. Mat. Izv., 14 (2017), 994–1010 | MR | Zbl
[14] A.V. Vasil'ev, E.P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl
[15] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Èlectron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl
[16] A.V. Vasil'ev, E.P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group”, Algebra Logic, 50:4 (2011), 291–322 | DOI | MR | Zbl
[17] D. Gorenstein, R. Lyons, R. Solomon, “Chapter A: Almost simple K-groups”, The classification of the finite simple groups, v. I, Mathematical Surveys and Monographs, 40, American Mathematical Society, Providence, 1998 | MR | Zbl
[18] M.W. Liebeck, J. Saxl, G.M. Seitz, “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. Lond. Math. Soc., III. Ser., 65:2 (1992), 297–325 | DOI | MR | Zbl
[19] A.V. Zavarnitsine, “Finite groups with a five-component prime graph”, Sib. Math. J., 54:1 (2013), 40–46 | DOI | MR | Zbl
[20] A.A. Buturlakin, M.A. Grechkoseeva, “The cyclic structure of maximal tori of the finite classical groups”, Algebra Logic, 46:2 (2007), 73–89 | DOI | MR | Zbl
[21] D. Gorenstein, Finite groups, Harper Row, New York, 1968 | MR | Zbl
[22] R. Guralnick, P.H. Tiep, “Finite simple unisingular groups of Lie type”, J. Group Theory, 6:3 (2003), 271–310 | DOI | MR | Zbl