On centers of soluble graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1517-1530
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group and $V=\pi(G)$ be a set of all prime divisors of its order. A soluble graph $\Gamma_{sol}(G)$ is a graph with a set of vertices $V$, where two vertices $p$ and $q$ in $V$ are adjacent if there exists a soluble subgroup $H$ of $G$ whose order is divisible by $pq$. We study centers of soluble graphs of finite sporadic and exceptional simple groups of Lie types.
Keywords:
finite group, $\pi$-subgroup, exceptional simple group of Lie type
Mots-clés : sporadic simple group, soluble graph.
Mots-clés : sporadic simple group, soluble graph.
@article{SEMR_2021_18_2_a11,
author = {L. S. Kazarin and V. N. Tutanov},
title = {On centers of soluble graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1517--1530},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/}
}
L. S. Kazarin; V. N. Tutanov. On centers of soluble graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1517-1530. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/