On centers of soluble graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1517-1530.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $V=\pi(G)$ be a set of all prime divisors of its order. A soluble graph $\Gamma_{sol}(G)$ is a graph with a set of vertices $V$, where two vertices $p$ and $q$ in $V$ are adjacent if there exists a soluble subgroup $H$ of $G$ whose order is divisible by $pq$. We study centers of soluble graphs of finite sporadic and exceptional simple groups of Lie types.
Keywords: finite group, $\pi$-subgroup, exceptional simple group of Lie type
Mots-clés : sporadic simple group, soluble graph.
@article{SEMR_2021_18_2_a11,
     author = {L. S. Kazarin and V. N. Tutanov},
     title = {On centers of soluble graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1517--1530},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - V. N. Tutanov
TI  - On centers of soluble graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1517
EP  - 1530
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/
LA  - en
ID  - SEMR_2021_18_2_a11
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A V. N. Tutanov
%T On centers of soluble graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1517-1530
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/
%G en
%F SEMR_2021_18_2_a11
L. S. Kazarin; V. N. Tutanov. On centers of soluble graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1517-1530. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/

[1] R.W. Carter, “Conjugacy classes in the Weil group”, Compos. Math., 25 (1972), 1–59 | MR | Zbl

[2] N.V. Maslova, I.N. Belousov, N.A. Minigulov, “Open questions formulated at the 13th school-conference on group theory dedicated to V.A. Belonogov's 85th birthday”, Tr. Inst. Mat. Mekh., 26, no. 3, 2020, 275–285 | MR

[3] S. Abe, N. Iiyori, “A generalization of prime graphs of finite groups”, Hokkaido Math. J., 29:2 (2000), 391–407 | DOI | MR | Zbl

[4] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[5] M.W. Liebeck, J. Saxl, G.M. Seitz, “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. Lond. Math. Soc., III Ser., 65:2 (1992), 297–325 | DOI | MR | Zbl

[6] A.S. Kondrat'ev, I.V. Khramtsov, “On finite tetraprimary groups”, Proc. Steklov Inst. Math., Suppl. 1, 279 (2012), S43–S61 | Zbl

[7] V.V. Korableva, “Parabolic permutation representations of the group $^2E_6(q^2)$”, Math. Notes, 67:6 (2000), 758–770 | DOI | MR | Zbl

[8] R.A. Wilson, The finite simple groups, Graduate text in mathematics, 251, Springer, London, 2009 | DOI | MR | Zbl

[9] B. Huppert, Finite groups, v. I, Springer, Berlin etc., 1967 | Zbl

[10] A.V. Vasil'ev, E.P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl

[11] B. Amberg, L. Kazarin, “On the soluble graph of a finite simple group”, Commun. Algebra, 41:6 (2013), 2297–2309 | DOI | MR | Zbl

[12] D.A. Craven, The maximal subgroups of the exceptional groups $F_4(q), E_6(q)$ and $^2E_6(q)$ and related almost simple groups, 19 Jul 2021, arXiv: 2103.04869v2 [math.GR] | MR | Zbl