On centers of soluble graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1517-1530

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $V=\pi(G)$ be a set of all prime divisors of its order. A soluble graph $\Gamma_{sol}(G)$ is a graph with a set of vertices $V$, where two vertices $p$ and $q$ in $V$ are adjacent if there exists a soluble subgroup $H$ of $G$ whose order is divisible by $pq$. We study centers of soluble graphs of finite sporadic and exceptional simple groups of Lie types.
Keywords: finite group, $\pi$-subgroup, exceptional simple group of Lie type
Mots-clés : sporadic simple group, soluble graph.
@article{SEMR_2021_18_2_a11,
     author = {L. S. Kazarin and V. N. Tutanov},
     title = {On centers of soluble graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1517--1530},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - V. N. Tutanov
TI  - On centers of soluble graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1517
EP  - 1530
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/
LA  - en
ID  - SEMR_2021_18_2_a11
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A V. N. Tutanov
%T On centers of soluble graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1517-1530
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/
%G en
%F SEMR_2021_18_2_a11
L. S. Kazarin; V. N. Tutanov. On centers of soluble graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1517-1530. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a11/