Extensions of the category $S-Act$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1332-1357.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a new category $SS-Act$ whose objects are $S$-acts and whose morphisms are defined so that each set $Hom_{SS-Act}(A, B)$ is an $S$-act. It is proved that this category has a reflective subcategory $ FS-Act $ that is naturally isomorphic to the category $ S-Act $. The set $Hom_{FS-Act}(A,B)$ coincides with the set of all fixed points of the $S$-act $Hom_{SS-Act}(A,B)$. In the case when $S$ is a group, it is proved that the category $SS-Act$ is a Grothendieck topos and the construction of limits and colimits is considered.
Keywords: S-act, limits and colimits of functors, adjoint functor, Cartesian Closed Category.
@article{SEMR_2021_18_2_a10,
     author = {E. E. Skurikhin and A. A. Stepanova and A. G. Sukhonos},
     title = {Extensions of the category $S-Act$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1332--1357},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a10/}
}
TY  - JOUR
AU  - E. E. Skurikhin
AU  - A. A. Stepanova
AU  - A. G. Sukhonos
TI  - Extensions of the category $S-Act$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1332
EP  - 1357
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a10/
LA  - en
ID  - SEMR_2021_18_2_a10
ER  - 
%0 Journal Article
%A E. E. Skurikhin
%A A. A. Stepanova
%A A. G. Sukhonos
%T Extensions of the category $S-Act$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1332-1357
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a10/
%G en
%F SEMR_2021_18_2_a10
E. E. Skurikhin; A. A. Stepanova; A. G. Sukhonos. Extensions of the category $S-Act$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1332-1357. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a10/

[1] M. Kilp,, U. Knauer, A.V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, Walter De Gruyter, Berlin, 2000 | Zbl

[2] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, New York, 1998 | Zbl

[3] S. Mac Lane, I. Moerdijk, Sheaves in geometry and logic: a first introduction to topos theory, Springer Verlag, New York etc, 1992 | Zbl

[4] A.A. Stepanova, E.E. Skurikhin, A.G. Sukhonos, “Category of Chu spaces over S-Act category”, Sib. Élektron. Mat. Izv., 14 (2017), 1220–1237 | Zbl

[5] A.A. Stepanova, E.E. Skurikhin, A.G. Sukhonos, “Equalizers and coequalizers in categories of Chu spaces over S-Act categories”, Sib. Élektron. Mat. Izv., 16 (2019), 709–717 | DOI | Zbl