Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a1, author = {M. R. Vedadi and N. Ghaedan}, title = {When a {(dual-)Baer} module is a direct sum of (co-)prime modules}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {782--791}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/} }
TY - JOUR AU - M. R. Vedadi AU - N. Ghaedan TI - When a (dual-)Baer module is a direct sum of (co-)prime modules JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 782 EP - 791 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/ LA - en ID - SEMR_2021_18_2_a1 ER -
M. R. Vedadi; N. Ghaedan. When a (dual-)Baer module is a direct sum of (co-)prime modules. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 782-791. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/