When a (dual-)Baer module is a direct sum of (co-)prime modules
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 782-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module $M$ is a direct sum of prime modules, then every direct summand of $M$ is retractable. The converse is true whenever the triangulating dimension of $M$ is finite (e.g. if the uniform dimension of $M$ is finite). Dually, if every direct summand of a dual-Baer module $M$ is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or $M$ is a max-module. Among other applications, we show that if $R$ is a commutative hereditary Noetherian ring then a finitely generated $R$-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.
Keywords: dual-Baer
Mots-clés : Baer module, co-prime module, co-retractable, prime module, retractable module.
@article{SEMR_2021_18_2_a1,
     author = {M. R. Vedadi and N. Ghaedan},
     title = {When a {(dual-)Baer} module is a direct sum of (co-)prime modules},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {782--791},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/}
}
TY  - JOUR
AU  - M. R. Vedadi
AU  - N. Ghaedan
TI  - When a (dual-)Baer module is a direct sum of (co-)prime modules
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 782
EP  - 791
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/
LA  - en
ID  - SEMR_2021_18_2_a1
ER  - 
%0 Journal Article
%A M. R. Vedadi
%A N. Ghaedan
%T When a (dual-)Baer module is a direct sum of (co-)prime modules
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 782-791
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/
%G en
%F SEMR_2021_18_2_a1
M. R. Vedadi; N. Ghaedan. When a (dual-)Baer module is a direct sum of (co-)prime modules. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 782-791. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/

[1] I. Amin, Y. Ibrahim, M. Yousif, “C$3$-modules”, Algebra Colloq., 22:4 (2015), 655–670 | DOI | Zbl

[2] B. Amini, M. Ershad, H. Sharif, “Coretractable modules”, J. Aust. Math. Soc., 86:3 (2009), 289–304 | DOI | Zbl

[3] F.W. Anderson, K.R. Fuller, Rings and categories of modules, Grad. Texts Math., 13, 2 ed., Springer-Verlag, New York, 1992 | DOI | Zbl

[4] M. Baziar, A. Haghany, M.R. Vedadi, “Fully Kasch modules and rings”, Algebra Colloq., 17:4 (2010), 621–628 | DOI | Zbl

[5] S.K. Berberian, Baer $*$-rings, Springer-Verlag, Berlin etc., 1972 | Zbl

[6] L. Bican, P. Jambor, T. Kepka, P. Nemec, “Prime and coprime modules”, Fundam. Math., 107 (1980), 33–45 | DOI | Zbl

[7] G.F. Birkenmeier, Y. Kara, A. Tercan, “$\pi$-Endo Baer modules”, Commun. Algebra, 48:3 (2020), 1132–1149 | DOI | Zbl

[8] G.F. Birkenmeier, H.E. Heatherly, J.Y. Kim, J.K. Park, “Triangular matrix representations”, J. Algebra, 230:2 (2000), 558–595 | DOI | Zbl

[9] T.P. Calci, A. Harmanci, B. Ungor, “Generating dual Baer modules via fully invariant submodules”, Quaest. Math., 42:8 (2019), 1125–1139 | DOI | Zbl

[10] N. Ding, Y. Ibrahim, M. Yousif, Y. Zhou, “C4-modules”, Commun. Algebra, 45:4 (2017), 1727–1740 | DOI | Zbl

[11] N. Ding, Y. Ibrahim, M. Yousif, Y. Zhou, “D4-modules”, J. Algebra Appl., 16:9 (2017), 1750166 | DOI | Zbl

[12] A. Haghany, M. Gurabi, M.R. Vedadi, “Modules whose endomorphism rings have finite triangulating dimension and some applications”, Mediterr. J. Math., 10:3 (2013), 1171–1187 | DOI | Zbl

[13] A. Haghany, O.A.S. Karamzadeh, M.R. Vedadi, “Rings with all finitely generated module retractable”, Bull. Iran. Math. Soc., 35:2 (2009), 37–45 | Zbl

[14] Y. Ibrahim, X.H. Nguyen, M. Yousif, Y. Zhou, “Rings whose cyclics are C3-modules”, J. Algebra Appl., 15:8 (2016), 1650152 | DOI | Zbl

[15] I. Kaplansky, Rings of operators, Mathematics Lecture Note Series, Benjamin, New York–Amsterdam, 1968 | Zbl

[16] T.Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, New York, 1998 | Zbl

[17] G. Lee, S.T. Rizvi, “Direct sums of quasi-Baer modules”, J. Algebra, 456 (2016), 76–92 | DOI | Zbl

[18] G. Lee, S.T. Rizvi, C.S. Roman, When do the direct sums of modules inherit certain properties?, Contemporary ring theory, Proceedings of the 6-th China-Japan-Korea international conference (Kyung Hee University, Suwon, Korea, June 27–July 2, 2011), eds. Kim, Jin Yong et al., World Sci. Publ., Hackensack, NJ, 2012, 47–77 | Zbl

[19] C. Lomp, “Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions”, J. Algebra Appl., 4:1 (2004), 77–97 | DOI | Zbl

[20] S.T. Rizvi, C.S. Roman, “Baer and quasi-Baer modules”, Comm. Algebra, 32:1 (2004), 103–123 | DOI | Zbl

[21] S.T. Rizvi, C.S. Roman, “On direct sums of Baer modules”, J. Algebra, 321:2 (2009), 682–696 | DOI | Zbl

[22] C.S. Roman, Baer and quasi-Baer modules, Doctoral Dissertation, The Ohio State University, 2004

[23] P.F. Smith, M.R. Vedadi, “Submodules of direct sums of compressible modules”, Comm. Algebra, 36:8 (2008), 3042–3049 | DOI | Zbl

[24] R. Tribak, “On weak dual Rickart modules and dual Baer modules”, Commun. Algebra, 43:8 (2015), 3190–3206 | DOI | Zbl

[25] D.K. Tütüncü, R. Tribak, “On dual Baer modules”, Glasg. Math. J., 52:2 (2010), 261–269 | DOI | Zbl

[26] I.E. Wijayanti, R. Wisbauer, “On coprime modules and comodules”, Commun. Algebra, 37:4 (2009), 1308–1333 | DOI | Zbl

[27] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | Zbl

[28] M. Yousif, I. Amin, Y. Ibrahim, “D3-Modules”, Commun. Algebra, 42:2 (2014), 578–592 | DOI | Zbl