When a (dual-)Baer module is a direct sum of (co-)prime modules
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 782-791
Voir la notice de l'article provenant de la source Math-Net.Ru
Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module $M$ is a direct sum of prime modules, then every direct summand of $M$ is retractable. The converse is true whenever the triangulating dimension of $M$ is finite (e.g. if the uniform dimension of $M$ is finite). Dually, if every direct summand of a dual-Baer module $M$ is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or $M$ is a max-module. Among other applications, we show that if $R$ is a commutative hereditary Noetherian ring then a finitely generated $R$-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.
Keywords:
dual-Baer
Mots-clés : Baer module, co-prime module, co-retractable, prime module, retractable module.
Mots-clés : Baer module, co-prime module, co-retractable, prime module, retractable module.
@article{SEMR_2021_18_2_a1,
author = {M. R. Vedadi and N. Ghaedan},
title = {When a {(dual-)Baer} module is a direct sum of (co-)prime modules},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {782--791},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/}
}
TY - JOUR AU - M. R. Vedadi AU - N. Ghaedan TI - When a (dual-)Baer module is a direct sum of (co-)prime modules JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 782 EP - 791 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/ LA - en ID - SEMR_2021_18_2_a1 ER -
M. R. Vedadi; N. Ghaedan. When a (dual-)Baer module is a direct sum of (co-)prime modules. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 782-791. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/