When a (dual-)Baer module is a direct sum of (co-)prime modules
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 782-791

Voir la notice de l'article provenant de la source Math-Net.Ru

Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module $M$ is a direct sum of prime modules, then every direct summand of $M$ is retractable. The converse is true whenever the triangulating dimension of $M$ is finite (e.g. if the uniform dimension of $M$ is finite). Dually, if every direct summand of a dual-Baer module $M$ is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or $M$ is a max-module. Among other applications, we show that if $R$ is a commutative hereditary Noetherian ring then a finitely generated $R$-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.
Keywords: dual-Baer
Mots-clés : Baer module, co-prime module, co-retractable, prime module, retractable module.
@article{SEMR_2021_18_2_a1,
     author = {M. R. Vedadi and N. Ghaedan},
     title = {When a {(dual-)Baer} module is a direct sum of (co-)prime modules},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {782--791},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/}
}
TY  - JOUR
AU  - M. R. Vedadi
AU  - N. Ghaedan
TI  - When a (dual-)Baer module is a direct sum of (co-)prime modules
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 782
EP  - 791
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/
LA  - en
ID  - SEMR_2021_18_2_a1
ER  - 
%0 Journal Article
%A M. R. Vedadi
%A N. Ghaedan
%T When a (dual-)Baer module is a direct sum of (co-)prime modules
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 782-791
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/
%G en
%F SEMR_2021_18_2_a1
M. R. Vedadi; N. Ghaedan. When a (dual-)Baer module is a direct sum of (co-)prime modules. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 782-791. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a1/