Cohomology for the Lie algebra of type $A_2$ over a field of characteristic $2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 729-739.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the cohomology of the classical Lie algebra of type $A_2$ over an algebraically closed field $k$ of characteristic $p=2$ with coefficients in simple modules. The obtained results were used to describe the cohomology of the Lie algebra $\mathfrak{gl} _3(k)$ and the cohomology of the restricted Lie algebra of Cartan type $W_3(\mathbf{1})$ with coefficients in the divided power algebra $O_3(\mathbf{1}).$
Keywords: Lie algebra, cohomology.
Mots-clés : simple module
@article{SEMR_2021_18_2_a0,
     author = {Sh. Sh. Ibraev and B. E. Turbayev},
     title = {Cohomology for the {Lie} algebra of type $A_2$ over a field of characteristic $2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {729--739},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a0/}
}
TY  - JOUR
AU  - Sh. Sh. Ibraev
AU  - B. E. Turbayev
TI  - Cohomology for the Lie algebra of type $A_2$ over a field of characteristic $2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 729
EP  - 739
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a0/
LA  - en
ID  - SEMR_2021_18_2_a0
ER  - 
%0 Journal Article
%A Sh. Sh. Ibraev
%A B. E. Turbayev
%T Cohomology for the Lie algebra of type $A_2$ over a field of characteristic $2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 729-739
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a0/
%G en
%F SEMR_2021_18_2_a0
Sh. Sh. Ibraev; B. E. Turbayev. Cohomology for the Lie algebra of type $A_2$ over a field of characteristic $2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 729-739. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a0/

[1] B.L. Feigin, D.B. Fuchs, “Cohomologies of Lie groups and Lie algebras”, Lie groups and Lie algebras II, Encycl. Math. Sci., 21, 2000, 125–215 | MR | Zbl

[2] M. Hazewinkel, “A duality theorem for the cohomology of Lie algebras”, Math. USSR, Sb., 12:4 (1970), 638–644 | DOI | MR | Zbl

[3] Shu Bin, Yu-Feng Yao, “On cohomology of a class of nonclassical restricted simple Lie algebras”, J. Algebra Appl., 16:8 (2017), 1750157 | DOI | MR | Zbl

[4] J.C. Jantzen, “First cohomology groups for classical Lie algebras”, Prog. Math., 95 (1991), 289–315 | MR | Zbl

[5] A.S. Dzhumadil'daev, Sh.Sh. Ibraev, “Nonsplit extensions of modular Lie algebras of rank $2$”, Homology Homotopy Appl., 4:2(1) (2002), 141–163 | DOI | MR | Zbl

[6] D.S. Permyakov, “Differentsirovaniya klassicheskikh algebr Li nad polem kharakteristiki $2$”, Vestn. NNGU. Ser. Matem., 2005:1 (2005), 123–134

[7] N.G. Chebochko, “Deformations of classical Lie algebras with homogeneous root system in characteristic two. I”, Sb. Math., 196:9 (2005), 1371–1402 | DOI | MR | Zbl

[8] A.S. Dzhumadil'daev, “On the cohomology of modular Lie algebras”, Math. USSR, Sb., 47:1 (1984), 127–143 | DOI | Zbl