Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a9, author = {A. I. Sakhanenko and V. I. Wachtel and E. I. Prokopenko and A. D. Shelepova}, title = {On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {9--26}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/} }
TY - JOUR AU - A. I. Sakhanenko AU - V. I. Wachtel AU - E. I. Prokopenko AU - A. D. Shelepova TI - On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 9 EP - 26 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/ LA - ru ID - SEMR_2021_18_1_a9 ER -
%0 Journal Article %A A. I. Sakhanenko %A V. I. Wachtel %A E. I. Prokopenko %A A. D. Shelepova %T On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 9-26 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/ %G ru %F SEMR_2021_18_1_a9
A. I. Sakhanenko; V. I. Wachtel; E. I. Prokopenko; A. D. Shelepova. On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 9-26. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/
[1] A.A. Borovkov, Compound Renewal Processes, Russ. Acad. Sci., M., 2020, 455 pp.
[2] R. Kutner, J. Masoliver, “The continuous time random walk, still trendy: fifty-year history, state of art and outlook”, Eur. Phys. J. B, 90:50 (2017) | DOI
[3] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | Zbl
[4] R.A. Doney, “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Relat. Fields, 101:4 (1995), 577–580 | Zbl
[5] B. von Bahr, C.-G. Esseen, “Inequalities for the $r$th absolute moment of a sum of random variables, $1 \le r \le 2$”, Ann. Math. Stat., 36:1 (1965), 299–303 | Zbl
[6] P. Erdös, M. Kac, “On certain limit theorems of the theory of probability”, Bull. Am. Math. Soc., 52 (1946), 292–302 | Zbl
[7] A.I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments”, Sib. Math. J., 47:6 (2006), 1113–1127 | Zbl
[8] A.I. Sakhanenko, “On Borovkov's estimate in the invariance principle”, Sib. Electron. Mat. Izv., 16 (2019), 1776–1784 | Zbl
[9] Q. Zhou, A.I. Sakhanenko, J. Guo, “Prokhorov distance with rates of convergence under sublinear expectations”, Teor. Veroyatnost. i Primenen., 65:4 (2020), 778–804
[10] D. Denisov, V. Wachtel, “Conditional limit theorems for ordered random walks”, Electron. J. Probab., 15:11 (2010), 292–322 | Zbl
[11] D. Denisov, V. Wachtel, “Random walks in cones”, Ann. Probab., 43:3 (2015), 992–1044 | Zbl
[12] D. Denisov, V. Wachtel, “Exit times for integrated random walks”, Ann. Inst. H. Poincaré, Probab. Stat., 51:1 (2015), 167–193 | Zbl