On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 9-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a compound renewal process, which is also known as a cumulative renewal process, or a continuous time random walk. We suppose that the jump size has zero mean and finite variance, whereas the renewal-time has a moment of order greater than $3/2$. We investigate the asymptotic behaviour of the probability that this process is staying above a moving non-increasing boundary up to time $T$ which tends to infinity. Our main result is a generalization of a similar one for ordinary random walks obtained earlier by Denisov D., Sakhanenko A. and Wachtel V. in Ann. Probab., 2018.
Keywords: compound renewal process, continuous time random walk, boundary crossing problems, moving boundaries, exit times.
@article{SEMR_2021_18_1_a9,
     author = {A. I. Sakhanenko and V. I. Wachtel and E. I. Prokopenko and A. D. Shelepova},
     title = {On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {9--26},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
AU  - V. I. Wachtel
AU  - E. I. Prokopenko
AU  - A. D. Shelepova
TI  - On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 9
EP  - 26
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/
LA  - ru
ID  - SEMR_2021_18_1_a9
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%A V. I. Wachtel
%A E. I. Prokopenko
%A A. D. Shelepova
%T On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 9-26
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/
%G ru
%F SEMR_2021_18_1_a9
A. I. Sakhanenko; V. I. Wachtel; E. I. Prokopenko; A. D. Shelepova. On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 9-26. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a9/

[1] A.A. Borovkov, Compound Renewal Processes, Russ. Acad. Sci., M., 2020, 455 pp.

[2] R. Kutner, J. Masoliver, “The continuous time random walk, still trendy: fifty-year history, state of art and outlook”, Eur. Phys. J. B, 90:50 (2017) | DOI

[3] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | Zbl

[4] R.A. Doney, “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Relat. Fields, 101:4 (1995), 577–580 | Zbl

[5] B. von Bahr, C.-G. Esseen, “Inequalities for the $r$th absolute moment of a sum of random variables, $1 \le r \le 2$”, Ann. Math. Stat., 36:1 (1965), 299–303 | Zbl

[6] P. Erdös, M. Kac, “On certain limit theorems of the theory of probability”, Bull. Am. Math. Soc., 52 (1946), 292–302 | Zbl

[7] A.I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments”, Sib. Math. J., 47:6 (2006), 1113–1127 | Zbl

[8] A.I. Sakhanenko, “On Borovkov's estimate in the invariance principle”, Sib. Electron. Mat. Izv., 16 (2019), 1776–1784 | Zbl

[9] Q. Zhou, A.I. Sakhanenko, J. Guo, “Prokhorov distance with rates of convergence under sublinear expectations”, Teor. Veroyatnost. i Primenen., 65:4 (2020), 778–804

[10] D. Denisov, V. Wachtel, “Conditional limit theorems for ordered random walks”, Electron. J. Probab., 15:11 (2010), 292–322 | Zbl

[11] D. Denisov, V. Wachtel, “Random walks in cones”, Ann. Probab., 43:3 (2015), 992–1044 | Zbl

[12] D. Denisov, V. Wachtel, “Exit times for integrated random walks”, Ann. Inst. H. Poincaré, Probab. Stat., 51:1 (2015), 167–193 | Zbl