Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a7, author = {A. R. Yeshkeyev and M. T. Kassymetova and O. I. Ulbrikht}, title = {Independence and simplicity in {Jonsson} theories with abstract geometry}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {433--455}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a7/} }
TY - JOUR AU - A. R. Yeshkeyev AU - M. T. Kassymetova AU - O. I. Ulbrikht TI - Independence and simplicity in Jonsson theories with abstract geometry JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 433 EP - 455 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a7/ LA - en ID - SEMR_2021_18_1_a7 ER -
%0 Journal Article %A A. R. Yeshkeyev %A M. T. Kassymetova %A O. I. Ulbrikht %T Independence and simplicity in Jonsson theories with abstract geometry %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 433-455 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a7/ %G en %F SEMR_2021_18_1_a7
A. R. Yeshkeyev; M. T. Kassymetova; O. I. Ulbrikht. Independence and simplicity in Jonsson theories with abstract geometry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 433-455. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a7/
[1] T.G. Mustafin, “New notions of stability of theories”, Model theory, Proc. Sov.-Fr. Colloq. (Karaganda/USSR, 1990), 112–125 | MR | Zbl
[2] E.A. Palyutin, “$E^*$-stable theories”, Algebra Logic, 42:2 (2003), 112–120 | DOI | MR | Zbl
[3] A.R. Yeshkeyev, O.I. Ulbrikht, “$Jsp$-cosemanticness and JSB property of abelian groups”, Sib. Électron. Math. Izv., 13 (2016), 861–874 | MR | Zbl
[4] A.R. Yeshkeyev, O.I. Ulbrikht, “$JSp$-cosemanticness of $R$-modules”, Sib. Électron. Math. Izv., 16 (2019), 1233–1244 | DOI | MR | Zbl
[5] A.R. Yeshkeyev, M.T. Kassymetova, N.K. Shamatayeva, “Model-theoretic properties of the $\sharp$-companion of a Jonsson set”, Eurasian mathematical journal, 9:2 (2018), 68–81 | DOI | MR | Zbl
[6] A.R. Yeshkeyev, “The structure of lattices of positive existential formulae of $\Delta$-$PJ$-theories”, ScienceAsia, 39 (2013), 19–24 | DOI
[7] B. Poizat, A. Yeshkeyev, “Positive Jonsson theories”, Log. Univers., 12:1-2 (2018), 101–127 | DOI | MR | Zbl
[8] S. Shelah, Classification theory and the number of non-isomorphic models, Studies in Logic and the Foundations of Mathematics, 92, North-Holland, Amsterdam etc., 1990 | MR | Zbl
[9] A. Marcja, C. Toffalori, A guide to classical and modern model theory, Trends in Logic-Studia Logica Library, 19, Springer, Dordrecht, 2003 | MR | Zbl
[10] J. Barwise (ed.), Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, 90, North-Holland Publishing Company, Amsterdam etc., 1982 | MR | Zbl
[11] G.E. Sacks, Saturated model theory, Mir, M., 1976 ; 2010 | MR | Zbl
[12] Y.T. Mustafin, “Quelques proprietes des theories de Jonsson”, J. Symb. Log., 67:2 (2002), 528–536 | DOI | MR | Zbl
[13] A.R. Yeshkeyev, M.T. Kassymetova, Jonsson theories and their classes of models, KarGU, Karaganda, 2009
[14] D. Lascar, B. Poizat, “An introduction to forking”, J. Symb. Log., 44:3 (1979), 330–350 | DOI | MR | Zbl
[15] J.T. Baldwin, Fundamentals of stability theory, Springer, Berlin etc, 1988 | MR | Zbl
[16] A.R. Yeshkeyev, “Model-theoretic properties of Jonsson fragments”, Bulletin of the Karaganda University. Mathematics Series, 4(76) (2014), 37–41
[17] A.R. Yeshkeyev, M.T. Kasymetova, “Properties of lattices of the existential formulas of Jonsson fragments”, Bulletin of the Karaganda University. Mathematics Series, 3(79) (2015), 25–32
[18] A.R. Yeshkeyev, “Convex fragmens of strongly minimal Jonsson sets”, Bulletin of the Karaganda University. Mathematics Series, 1(77) (2015), 67–72 http://rep.ksu.kz:80//handle/data/4094
[19] A.R. Yeshkeyev, “Companions of the fragments in the Jonsson enrichment”, Bulletin of the Karaganda University. Mathematics Series, 1(85) (2017), 41–45 | DOI
[20] F.O. Wagner, Simple Theories, Mathematics and Its Applications, 503, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl
[21] C.C. Chang, H.J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, 73, North-Holland, Amsterdam etc., 1990 | MR | Zbl
[22] T.G. Mustafin, Stable theories, Karaganda, 1981 | Zbl
[23] T.G. Mustafin, The number of models of theories, Karaganda, 1983
[24] A.R. Yeshkeyev, “On Jonsson stability and some of its generalizations”, J. Math. Sci., 166:5 (2010), 646–654 | DOI | MR | Zbl
[25] E. Hrushovski, B. Zilber, “Zariski geometries”, Bull. Am. Math. Soc., New Ser., 28:2 (1993), 315–323 | DOI | MR | Zbl
[26] D. Marker, Model Theory: An Introduction, Graduate Texts in Mathematics, 217, Springer-Verlag, New York, 2002 | MR | Zbl
[27] E. Hrushovski, “A new strongly minimal set”, Ann. Pure Appl. Logic, 62:2 (1993), 147–166 | DOI | MR | Zbl
[28] A.R. Yeshkeyev, M.T. Omarova, G.E. Zhumabekova, “The $J$-minimal sets in the hereditary theories”, Bulletin of the Karaganda University. Mathematics Series, 2(94) (2019), 92–98 | DOI
[29] J.T. Baldwin, D.W. Kueker, “Algebraically prime models”, Ann. Math. Logic, 20 (1981), 289–330 | DOI | MR | Zbl