Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a6, author = {R. A. Kornev}, title = {Computable metrics above the standard real metric}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {377--392}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a6/} }
R. A. Kornev. Computable metrics above the standard real metric. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 377-392. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a6/
[1] R. Kornev, “Reducibility of computable metrics on the real line”, Algebra Logic, 56:4 (2017), 302–317 | DOI | MR | Zbl
[2] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, Maidenhead, Berksh., 1967 | MR | Zbl
[3] R. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Springer-Verlag, Berlin etc., 1987 | MR | Zbl
[4] K. Weihrauch, Computable analysis. An introduction, Texts Theoret. Comput. Sci.. An EATCS Ser., Springer, Berlin, 2000 | DOI | MR | Zbl
[5] R. Downey, D. Hirschfeldt, Algorithmic randomness and complexity, Springer, New York, 2010 | MR | Zbl
[6] Ch. Kreitz, K. Weihrauch, “Theory of representations”, Theor. Comput. Sci., 38 (1985), 35–53 | DOI | MR | Zbl
[7] Yu.L. Ershov, “Theory of numberings”, Handbook of computability theory, Stud. Logic Found. Math., 140, ed. E. R. Griffor, Elsevier, Amsterdam, 1999, 473–503 | DOI | MR | Zbl
[8] A.G. Melnikov, “Computably isometric spaces”, J. Symb. Log., 78:4 (2013), 1055–1085 | DOI | MR | Zbl
[9] J. Miller, “Degrees of unsolvability of continuous functions”, J. Symb. Log., 69:2 (2004), 555–584 | DOI | MR | Zbl
[10] K. Ko, H. Friedman, “Computational complexity of real functions”, Theor. Comput. Sci., 20:3 (1982), 323–352 | DOI | MR | Zbl
[11] K. Weihrauch, X. Zheng, “Effectiveness of the global modulus of continuity on metric spaces”, Theor. Comput. Sci., 219:1-2 (1999), 439–450 | DOI | MR | Zbl
[12] R. Shore, “The Turing degrees: An introduction”, Forcing, Iterated Ultrapowers, and Turing Degrees, World Scientific, 2015, 39–121 | DOI | MR
[13] S. Binns, S. Simpson, “Embeddings into the Medvedev and Muchnik lattices of $\Pi^0_1$ classes”, Arch. Math. Logic, 43:3 (2004), 399–414 | DOI | MR | Zbl
[14] S.S. Goncharov, Countable Boolean algebras and decidability, Siberian School of Algebra and Logic, Plenum, New York, 1997 | MR | Zbl