Computable metrics above the standard real metric
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 377-392

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a sequence of computable real metrics pairwise incomparable under weak reducibility $\leq_{ch}$ and located above the standard real metric w. r. t. computable reducibility $\leq_c$. Iterating the construction, we obtain that the ordering $(P(\omega),\subseteq)$ of subsets of $\omega$ is embeddable into the ordering of $ch$-degrees of real metrics above the standard metric. It is also proved that the countable atomless Boolean algebra is embeddable with preservation of joins and meets into the ordering of $c$-degrees of computable real metrics.
Keywords: computable metric space, representation of real numbers, Cauchy representation, reducibility of representations, computable analysis.
@article{SEMR_2021_18_1_a6,
     author = {R. A. Kornev},
     title = {Computable metrics above the standard real metric},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {377--392},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a6/}
}
TY  - JOUR
AU  - R. A. Kornev
TI  - Computable metrics above the standard real metric
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 377
EP  - 392
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a6/
LA  - en
ID  - SEMR_2021_18_1_a6
ER  - 
%0 Journal Article
%A R. A. Kornev
%T Computable metrics above the standard real metric
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 377-392
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a6/
%G en
%F SEMR_2021_18_1_a6
R. A. Kornev. Computable metrics above the standard real metric. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 377-392. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a6/