Existence results for a class of nonlinear degenerate Navier problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 647-667

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we are interested in the existence of solutions for Navier problem associated with the degenerate nonlinear elliptic equations \begin{eqnarray*} {\Delta}{\big[}{\omega}_1(x) {\vert{\Delta}u\vert}^{p-2}{\Delta}u + {\omega}_2(x) {\vert{\Delta}u\vert}^{q-2}{\Delta}u {\big]} -\sum_{j=1}^n D_j{\bigl[}{\omega}_3(x) {\mathcal{A}}_j(x, u, {\nabla}u){\bigr]}\\ = f_0(x) - \sum_{j=1}^nD_jf_j(x), \ \ {\mathrm{in}} \ \ {\Omega} \end{eqnarray*} in the setting of the weighted Sobolev spaces.
Keywords: degenerate nonlinear elliptic equations, weighted Sobolev spaces.
@article{SEMR_2021_18_1_a49,
     author = {A. C. Cavalheiro},
     title = {Existence results for a class of nonlinear degenerate {Navier} problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {647--667},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a49/}
}
TY  - JOUR
AU  - A. C. Cavalheiro
TI  - Existence results for a class of nonlinear degenerate Navier problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 647
EP  - 667
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a49/
LA  - en
ID  - SEMR_2021_18_1_a49
ER  - 
%0 Journal Article
%A A. C. Cavalheiro
%T Existence results for a class of nonlinear degenerate Navier problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 647-667
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a49/
%G en
%F SEMR_2021_18_1_a49
A. C. Cavalheiro. Existence results for a class of nonlinear degenerate Navier problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 647-667. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a49/