Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a49, author = {A. C. Cavalheiro}, title = {Existence results for a class of nonlinear degenerate {Navier} problems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {647--667}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a49/} }
TY - JOUR AU - A. C. Cavalheiro TI - Existence results for a class of nonlinear degenerate Navier problems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 647 EP - 667 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a49/ LA - en ID - SEMR_2021_18_1_a49 ER -
A. C. Cavalheiro. Existence results for a class of nonlinear degenerate Navier problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 647-667. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a49/
[1] L.-E. Anderson, T. Elfving, G.H. Golub, “Solution of biharmonic equations with application to radar imaging”, J. Comput. Appl. Math., 94:2 (1998), 153–180 | DOI | MR | Zbl
[2] D. Bresch, J. Lemoine, F. Guíllen-Gonzalez, “A note on a degenerate elliptic equations with applications for lakes and seas”, Electron. J. Differ. Equ., 2004, 42 | MR | Zbl
[3] A.C. Cavalheiro, “Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems”, J. Appl. Anal., 19:1 (2013), 41–54 | DOI | MR | Zbl
[4] A.C. Cavalheiro, “Existence results for Dirichlet problems with degenerate p-Laplacian”, Opusc. Math., 33:3 (2013), 439–453 | DOI | MR | Zbl
[5] A.C. Cavalheiro, Topics on Degenerate Elliptic Equations, Lambert Academic Publishing, Germany, 2018
[6] M. Chipot, Elliptic Equations. An Introductory Course, Birkhäuser, Basel, 2009 | MR | Zbl
[7] M. Colombo, Flows of non-smooth vector fields and degenerate elliptic equations, With applications to the Vlasov-Poisson and semigeostrophic systems, Publications on the Scuola Normale Superiore Pisa, 22, Pisa, 2017 | MR | Zbl
[8] M. Colombo, A. Figalli, “Regularity results for very degenerate elliptic equations”, J. Math. Pures Appl., 101:1 (2014), 94–117 | DOI | MR | Zbl
[9] P. Drábek, A. Kufner, F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, Walter de Gruyter, Berlin, 1997 | MR | Zbl
[10] E. Fabes, C. Kenig, R. Serapioni, “The local regularity of solutions of degenerate elliptic equations”, Commun. Partial Differ. Equations, 7 (1982), 77–116 | DOI | MR | Zbl
[11] A. Kufner, O. John, S. Fuc̆ik, Function spaces, From the Czech, Noordhoff International Publ., Leyden, 1977 | MR | Zbl
[12] J. Garcia-Cuerva, J.L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116, Amsterdam etc., 1985 | MR | Zbl
[13] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin etc, 1983 | MR | Zbl
[14] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford, 1993 | MR | Zbl
[15] A.A. Kovalevsky, Y.S. Gorban, “Solvability of degenerate anisotropic elliptic second-order equations with $L^1$-data”, Electron.J. Differ. Equ., 2013 (2013), 167, 1–17 | DOI | MR | Zbl
[16] A. Kufner, Weighted Sobolev spaces, John Wiley Sons, Chichester etc, 1985 | MR | Zbl
[17] A. Kufner, B. Opic, “How to define reasonably weighted Sobolev spaces”, Commentat. Math. Univ. Carol., 25 (1984), 537–554 | MR | Zbl
[18] M.-C. Lai, H.-C. Liu, “Fast direct solver for the biharmonic equations on a disk and its application to incompressible flows”, Appl. Math. Comput., 164:3 (2005), 679–695 | MR | Zbl
[19] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal function”, Trans. Am. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl
[20] J. Petean, “Degenerate solutions of a nonlinear elliptic equation on the sphere”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 100 (2014), 23–29 | DOI | MR | Zbl
[21] M. Talbi, N. Tsouli, “On the spectrum of the weighted p-biharmonic operator with weight”, Mediterr. J. Math., 4:1 (2007), 73–86 | DOI | MR | Zbl
[22] A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, Orlando etc, 1986 | MR | Zbl
[23] B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, 1736, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[24] E. Zeidler, Nonlinear functional analysis and its applications, v. I, Springer-Verlag, New York etc, 1990 | MR | Zbl
[25] E. Zeidler, Nonlinear functional analysis and its applications, v. II/B, Springer-Verlag, New York etc, 1990 | MR | Zbl