Ergodic theorems in Banach ideals of compact operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 534-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal H$ be an infinite-dimensional Hilbert space, and let $\mathcal B(\mathcal H)$ ($\mathcal K(\mathcal H)$) be the $C^\star$–algebra of all bounded (compact) linear operators in $\mathcal H$. Let $(E,\|\cdot\|_E)$ be a fully symmetric sequence space. If $\{s_n(x)\}_{n=1}^\infty$ are the singular values of $x\in\mathcal K(\mathcal H)$, let $\mathcal C_E=\{x\in\mathcal K(\mathcal H): \{s_n(x)\}\in E\}$ with $\|x\|_{\mathcal C_E}=\|\{s_n(x)\}\|_E$, $x\in\mathcal C_E$, be the Banach ideal of compact operators generated by $E$. We show that the averages $A_n(T)(x)=\frac1{n+1}\sum\limits_{k = 0}^n T^k(x) $ converge uniformly in $\mathcal C_E$ for any Dunford-Schwartz operator $T$ and $x\in\mathcal C_E$. Besides, if $0\leq x\in\mathcal B(\mathcal H)\setminus\mathcal K(\mathcal H)$, there exists a Dunford-Schwartz operator $T$ such that the sequence $\{A_n(T)(x)\}$ does not converge uniformly. We also show that the averages $A_n(T)$ converge strongly in $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ if and only if $E$ is separable and $E \neq l^1$ as sets.
Keywords: symmetric sequence space, Banach ideal of compact operators, Dunford-Schwartz operator, individual ergodic theorem, mean ergodic theorem.
@article{SEMR_2021_18_1_a48,
     author = {A. N. Azizov and V. I. Chilin},
     title = {Ergodic theorems in {Banach} ideals of compact operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {534--547},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/}
}
TY  - JOUR
AU  - A. N. Azizov
AU  - V. I. Chilin
TI  - Ergodic theorems in Banach ideals of compact operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 534
EP  - 547
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/
LA  - en
ID  - SEMR_2021_18_1_a48
ER  - 
%0 Journal Article
%A A. N. Azizov
%A V. I. Chilin
%T Ergodic theorems in Banach ideals of compact operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 534-547
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/
%G en
%F SEMR_2021_18_1_a48
A. N. Azizov; V. I. Chilin. Ergodic theorems in Banach ideals of compact operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 534-547. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/

[1] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press Inc., Boston etc., 1988 | MR | Zbl

[2] V. Chilin, A. Azizov, “Ergodic theorems in symmetric sequences spaces”, Colloq. Math., 156:1 (2019), 57–68 | DOI | MR | Zbl

[3] V. Chilin, S. Litvinov, “Ergodic theorems in fully symmetric spaces of $\tau$-measurable operators”, Stud. Math., 288:2 (2015), 177–195 | DOI | MR | Zbl

[4] V. Chilin, S. Litvinov, “Individual ergodic theorems in noncommutative Orlicz spaces”, Positivity, 21:1 (2017), 49–59 | DOI | MR | Zbl

[5] V. Chilin, S. Litvinov, “The validity space of Dunford-Schwartz pointwise ergodic theorem”, J. Math. Anal. Appl., 461:1 (2018), 234–247 | DOI | MR | Zbl

[6] N. Dunford, J.T. Schwartz, Linear Operators, v. I, General theory, John Willey and Sons, New York etc, 1988 | MR | Zbl

[7] P.G. Dodds, T.K. Dodds, B. de Pagter, “Fully symmetric operator spaces”, Integral Equations Oper. Theory, 15:6 (1992), 942–972 | DOI | MR | Zbl

[8] P.G. Dodds, T.K. Dodds, B. de Pagter, “Noncommutative Köthe duality”, Trans. Am. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl

[9] P.G. Dodds, T.K. Dodds, F.A. Sukochev, “Banach-Saks properties in symmetric spaces of measurable operators”, Stud. Math., 178:2 (2007), 125–166 | DOI | MR | Zbl

[10] G.A. Edgar, L. Sucheston, Stopping times and directed processes, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[11] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123 (1986), 269–300 | DOI | MR | Zbl

[12] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, RI, 1969 | DOI | MR | Zbl

[13] M. Junge, Q. Xu, “Noncommutative maximal ergodic theorems”, J. Am. Math. Soc., 20:2 (2007), 385–439 | DOI | MR | Zbl

[14] S.G. Krein, Yu.I. Petunin, E.M. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, 54, Amer. Math. Soc., Providence, RI, 1982 | MR | Zbl

[15] J. Lindenstrauss, L. Tsafriri, Classical Banach spaces, v. I, Springer-Verlag, Berlin etc, 1977 ; v. II, 1979 | MR | Zbl | Zbl

[16] S. Litvinov, “Uniform equicontinuity of sequences of measurable operators and noncommutative ergodic theorems”, Proc. Amer. Math. Soc., 140:7 (2012), 2401–2409 | DOI | MR | Zbl

[17] S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, de Gruyter, Berlin, 2013 | MR | Zbl

[18] B.A. Rubshtein, G. Ya. Grabarnik, M.A. Muratov, Yu.S. Pashkova, Foundations of symmetric spaces of measurable functions. Lorentz, Marcinkiewicz and Orlicz spaces, Springer, Cham, 2016 | MR | Zbl

[19] B. Simon, Trace ideals and their applications, American Mathematical Society, Providence, 2005 | MR | Zbl

[20] S. Stratila, L. Zsido, Lectures on von Neumann algebras, Editura Academiei, Bucharest, 1979 | MR | Zbl

[21] M. Takesaki, “Conditional expectations in von Neumann algebras”, J. Funct. Anal., 9 (1972), 306–321 | DOI | MR | Zbl

[22] H. Umegaki, “Conditional expectation in operator algebras, II”, Tohoku Math. J., II Ser., 8 (1956), 86–100 | MR | Zbl

[23] F.J. Yeadon, “Ergodic theorems for semifinite von Neumann algebras I”, J. Lond. Math. Soc., II Ser., 16 (1977), 326–332 | DOI | MR | Zbl

[24] F.J. Yeadon, “Ergodic theorems for semifinite von Neumann algebras. II”, Math. Proc. Camb. Philos. Soc., 88 (1980), 135–147 | DOI | MR | Zbl