Ergodic theorems in Banach ideals of compact operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 534-547

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal H$ be an infinite-dimensional Hilbert space, and let $\mathcal B(\mathcal H)$ ($\mathcal K(\mathcal H)$) be the $C^\star$–algebra of all bounded (compact) linear operators in $\mathcal H$. Let $(E,\|\cdot\|_E)$ be a fully symmetric sequence space. If $\{s_n(x)\}_{n=1}^\infty$ are the singular values of $x\in\mathcal K(\mathcal H)$, let $\mathcal C_E=\{x\in\mathcal K(\mathcal H): \{s_n(x)\}\in E\}$ with $\|x\|_{\mathcal C_E}=\|\{s_n(x)\}\|_E$, $x\in\mathcal C_E$, be the Banach ideal of compact operators generated by $E$. We show that the averages $A_n(T)(x)=\frac1{n+1}\sum\limits_{k = 0}^n T^k(x) $ converge uniformly in $\mathcal C_E$ for any Dunford-Schwartz operator $T$ and $x\in\mathcal C_E$. Besides, if $0\leq x\in\mathcal B(\mathcal H)\setminus\mathcal K(\mathcal H)$, there exists a Dunford-Schwartz operator $T$ such that the sequence $\{A_n(T)(x)\}$ does not converge uniformly. We also show that the averages $A_n(T)$ converge strongly in $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ if and only if $E$ is separable and $E \neq l^1$ as sets.
Keywords: symmetric sequence space, Banach ideal of compact operators, Dunford-Schwartz operator, individual ergodic theorem, mean ergodic theorem.
@article{SEMR_2021_18_1_a48,
     author = {A. N. Azizov and V. I. Chilin},
     title = {Ergodic theorems in {Banach} ideals of compact operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {534--547},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/}
}
TY  - JOUR
AU  - A. N. Azizov
AU  - V. I. Chilin
TI  - Ergodic theorems in Banach ideals of compact operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 534
EP  - 547
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/
LA  - en
ID  - SEMR_2021_18_1_a48
ER  - 
%0 Journal Article
%A A. N. Azizov
%A V. I. Chilin
%T Ergodic theorems in Banach ideals of compact operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 534-547
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/
%G en
%F SEMR_2021_18_1_a48
A. N. Azizov; V. I. Chilin. Ergodic theorems in Banach ideals of compact operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 534-547. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/