Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a48, author = {A. N. Azizov and V. I. Chilin}, title = {Ergodic theorems in {Banach} ideals of compact operators}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {534--547}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/} }
TY - JOUR AU - A. N. Azizov AU - V. I. Chilin TI - Ergodic theorems in Banach ideals of compact operators JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 534 EP - 547 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/ LA - en ID - SEMR_2021_18_1_a48 ER -
A. N. Azizov; V. I. Chilin. Ergodic theorems in Banach ideals of compact operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 534-547. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a48/
[1] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press Inc., Boston etc., 1988 | MR | Zbl
[2] V. Chilin, A. Azizov, “Ergodic theorems in symmetric sequences spaces”, Colloq. Math., 156:1 (2019), 57–68 | DOI | MR | Zbl
[3] V. Chilin, S. Litvinov, “Ergodic theorems in fully symmetric spaces of $\tau$-measurable operators”, Stud. Math., 288:2 (2015), 177–195 | DOI | MR | Zbl
[4] V. Chilin, S. Litvinov, “Individual ergodic theorems in noncommutative Orlicz spaces”, Positivity, 21:1 (2017), 49–59 | DOI | MR | Zbl
[5] V. Chilin, S. Litvinov, “The validity space of Dunford-Schwartz pointwise ergodic theorem”, J. Math. Anal. Appl., 461:1 (2018), 234–247 | DOI | MR | Zbl
[6] N. Dunford, J.T. Schwartz, Linear Operators, v. I, General theory, John Willey and Sons, New York etc, 1988 | MR | Zbl
[7] P.G. Dodds, T.K. Dodds, B. de Pagter, “Fully symmetric operator spaces”, Integral Equations Oper. Theory, 15:6 (1992), 942–972 | DOI | MR | Zbl
[8] P.G. Dodds, T.K. Dodds, B. de Pagter, “Noncommutative Köthe duality”, Trans. Am. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl
[9] P.G. Dodds, T.K. Dodds, F.A. Sukochev, “Banach-Saks properties in symmetric spaces of measurable operators”, Stud. Math., 178:2 (2007), 125–166 | DOI | MR | Zbl
[10] G.A. Edgar, L. Sucheston, Stopping times and directed processes, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[11] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123 (1986), 269–300 | DOI | MR | Zbl
[12] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, RI, 1969 | DOI | MR | Zbl
[13] M. Junge, Q. Xu, “Noncommutative maximal ergodic theorems”, J. Am. Math. Soc., 20:2 (2007), 385–439 | DOI | MR | Zbl
[14] S.G. Krein, Yu.I. Petunin, E.M. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, 54, Amer. Math. Soc., Providence, RI, 1982 | MR | Zbl
[15] J. Lindenstrauss, L. Tsafriri, Classical Banach spaces, v. I, Springer-Verlag, Berlin etc, 1977 ; v. II, 1979 | MR | Zbl | Zbl
[16] S. Litvinov, “Uniform equicontinuity of sequences of measurable operators and noncommutative ergodic theorems”, Proc. Amer. Math. Soc., 140:7 (2012), 2401–2409 | DOI | MR | Zbl
[17] S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, de Gruyter, Berlin, 2013 | MR | Zbl
[18] B.A. Rubshtein, G. Ya. Grabarnik, M.A. Muratov, Yu.S. Pashkova, Foundations of symmetric spaces of measurable functions. Lorentz, Marcinkiewicz and Orlicz spaces, Springer, Cham, 2016 | MR | Zbl
[19] B. Simon, Trace ideals and their applications, American Mathematical Society, Providence, 2005 | MR | Zbl
[20] S. Stratila, L. Zsido, Lectures on von Neumann algebras, Editura Academiei, Bucharest, 1979 | MR | Zbl
[21] M. Takesaki, “Conditional expectations in von Neumann algebras”, J. Funct. Anal., 9 (1972), 306–321 | DOI | MR | Zbl
[22] H. Umegaki, “Conditional expectation in operator algebras, II”, Tohoku Math. J., II Ser., 8 (1956), 86–100 | MR | Zbl
[23] F.J. Yeadon, “Ergodic theorems for semifinite von Neumann algebras I”, J. Lond. Math. Soc., II Ser., 16 (1977), 326–332 | DOI | MR | Zbl
[24] F.J. Yeadon, “Ergodic theorems for semifinite von Neumann algebras. II”, Math. Proc. Camb. Philos. Soc., 88 (1980), 135–147 | DOI | MR | Zbl