Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a47, author = {N. M. Abasov}, title = {On band preserving orthogonally additive operators}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {495--510}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a47/} }
N. M. Abasov. On band preserving orthogonally additive operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 495-510. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a47/
[1] N. Abasov, “Completely additive and $C$-compact operators in lattice-normed spaces”, Ann. Funct. Anal., 11:4 (2020), 914–928 | DOI | MR | Zbl
[2] N. Abasov, “On the sum of narrow orthogonally additive operators”, Russ. Math., 64:7 (2020), 1–6 | DOI | MR | Zbl
[3] N. Abasov, M. Pliev, “On extensions of some nonlinear maps in vector lattices”, J. Math. Anal. Appl., 455:1 (2017), 516–527 | DOI | MR | Zbl
[4] N. Abasov, M. Pliev, “Disjointness-preserving orthogonally additive operators in vector lattices”, Banach J. Math. Anal., 12:3 (2018), 730–750 | DOI | MR | Zbl
[5] N. Abasov, M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4:1 (2019), 251–264 | DOI | MR | Zbl
[6] Y.A. Abramovich, C.D. Aliprantis, An invitation to operator theory, AMS, Providence, 2002 | MR | Zbl
[7] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Berlin, 2006 | MR | Zbl
[8] J.A. Appel, P.P. Zabrejko, Nonlinear superposition operators, Cambridge University Press, Cambridge, 2008 | MR | Zbl
[9] O. Fotiy, A. Gumenchuk, I. Krasikova, M. Popov, “On sums of narrow and compact operators”, Positivity, 24:1 (2020), 69–80 | DOI | MR | Zbl
[10] W.A. Feldman, “A factorization for orthogonally additive operators on Banach lattices”, J. Math. Anal. Appl., 472:1 (2019), 238–245 | DOI | MR | Zbl
[11] O. Maslyuchenko, M. Popov, “On sums of strictly narrow operators acting from a Riesz space to a Banach space”, J. Funct. Spaces, 2019, 8569409 | MR | Zbl
[12] J.M. Mazón, S. Segura de León, “Order bounded orthogonally additive operators”, Rev. Roum. Math. Pures Appl., 35:4 (1990), 329–353 | MR | Zbl
[13] V. Mykhaylyuk, M. Pliev, M. Popov, “The lateral order on Riesz spaces and orthogonally additive operators”, Positivity, 25:2 (2021), 291–327 | DOI | MR | Zbl
[14] V. Orlov, M. Pliev, D. Rode, “Domination problem for $AM$-compact abstract Uryson operators”, Arch. Math., 107:5 (2016), 543–552 | DOI | MR | Zbl
[15] M. Pliev, “Domination problem for narrow orthogonally additive operators”, Positivity, 21:1 (2017), 23–33 | DOI | MR | Zbl
[16] M. Pliev, X. Fang, “Narrow orthogonally additive operators in lattice-normed spaces”, Sib. Math. J., 58:1 (2017), 134–141 | DOI | MR | Zbl
[17] M. Pliev, M. Popov, “On extension of abstract Urysohn operators”, Sib. Math. J., 57:3 (2016), 552–557 | DOI | MR | Zbl
[18] M.A. Pliev, F. Polat, M.R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Result. Math., 74:4 (2019), 157 | DOI | MR | Zbl
[19] M. Pliev, K. Ramdane, “Order unbounded orthogonally additive operators in vector lattices”, Mediterr. J. Math., 15:2 (2018), 55 | DOI | MR | Zbl
[20] M. Pliev, M. Weber, “Finite elements in some vector lattices of nonlinear operators”, Positivity, 22:1 (2018), 245–260 | DOI | MR | Zbl
[21] M. Pliev, M. Weber, “Disjointness and order projections in the vector lattices of abstract Uryson operators”, Positivity, 20:3 (2016), 695–707 | DOI | MR | Zbl
[22] A. Schep, “Positive diagonal and triangular operators”, J. Oper. Theory, 3:2 (2016), 165–178 | MR | Zbl