On band preserving orthogonally additive operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 495-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate a new class of operators on vector lattices. We say that an orthogonally additive operator $T:E\to E$ on a vector lattice $E$ is band preserving if $T(D)\subset \{D\}^{\perp\perp}$ for every subset $D$ of $E$. We show that the set of all band preserving operators on a Dedekind complete vector lattice $E$ is a band in the vector lattice of all regular orthogonally additive operators on $E$ which coincides with the band generated by the identity operator. We present a formula for the order projection onto this band and obtain an analytical representation for order continuous band preserving operators on the space of all measurable functions. Finally, we consider the procedure of extending a band preserving map from a lateral band to the whole space.
Keywords: orthogonally additive operator, band preserving operator, disjointness preserving operator, nonlinear superposition operator, vector lattice, lateral ideal, lateral band.
@article{SEMR_2021_18_1_a47,
     author = {N. M. Abasov},
     title = {On band preserving orthogonally additive operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {495--510},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a47/}
}
TY  - JOUR
AU  - N. M. Abasov
TI  - On band preserving orthogonally additive operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 495
EP  - 510
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a47/
LA  - en
ID  - SEMR_2021_18_1_a47
ER  - 
%0 Journal Article
%A N. M. Abasov
%T On band preserving orthogonally additive operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 495-510
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a47/
%G en
%F SEMR_2021_18_1_a47
N. M. Abasov. On band preserving orthogonally additive operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 495-510. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a47/

[1] N. Abasov, “Completely additive and $C$-compact operators in lattice-normed spaces”, Ann. Funct. Anal., 11:4 (2020), 914–928 | DOI | MR | Zbl

[2] N. Abasov, “On the sum of narrow orthogonally additive operators”, Russ. Math., 64:7 (2020), 1–6 | DOI | MR | Zbl

[3] N. Abasov, M. Pliev, “On extensions of some nonlinear maps in vector lattices”, J. Math. Anal. Appl., 455:1 (2017), 516–527 | DOI | MR | Zbl

[4] N. Abasov, M. Pliev, “Disjointness-preserving orthogonally additive operators in vector lattices”, Banach J. Math. Anal., 12:3 (2018), 730–750 | DOI | MR | Zbl

[5] N. Abasov, M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4:1 (2019), 251–264 | DOI | MR | Zbl

[6] Y.A. Abramovich, C.D. Aliprantis, An invitation to operator theory, AMS, Providence, 2002 | MR | Zbl

[7] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Berlin, 2006 | MR | Zbl

[8] J.A. Appel, P.P. Zabrejko, Nonlinear superposition operators, Cambridge University Press, Cambridge, 2008 | MR | Zbl

[9] O. Fotiy, A. Gumenchuk, I. Krasikova, M. Popov, “On sums of narrow and compact operators”, Positivity, 24:1 (2020), 69–80 | DOI | MR | Zbl

[10] W.A. Feldman, “A factorization for orthogonally additive operators on Banach lattices”, J. Math. Anal. Appl., 472:1 (2019), 238–245 | DOI | MR | Zbl

[11] O. Maslyuchenko, M. Popov, “On sums of strictly narrow operators acting from a Riesz space to a Banach space”, J. Funct. Spaces, 2019, 8569409 | MR | Zbl

[12] J.M. Mazón, S. Segura de León, “Order bounded orthogonally additive operators”, Rev. Roum. Math. Pures Appl., 35:4 (1990), 329–353 | MR | Zbl

[13] V. Mykhaylyuk, M. Pliev, M. Popov, “The lateral order on Riesz spaces and orthogonally additive operators”, Positivity, 25:2 (2021), 291–327 | DOI | MR | Zbl

[14] V. Orlov, M. Pliev, D. Rode, “Domination problem for $AM$-compact abstract Uryson operators”, Arch. Math., 107:5 (2016), 543–552 | DOI | MR | Zbl

[15] M. Pliev, “Domination problem for narrow orthogonally additive operators”, Positivity, 21:1 (2017), 23–33 | DOI | MR | Zbl

[16] M. Pliev, X. Fang, “Narrow orthogonally additive operators in lattice-normed spaces”, Sib. Math. J., 58:1 (2017), 134–141 | DOI | MR | Zbl

[17] M. Pliev, M. Popov, “On extension of abstract Urysohn operators”, Sib. Math. J., 57:3 (2016), 552–557 | DOI | MR | Zbl

[18] M.A. Pliev, F. Polat, M.R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Result. Math., 74:4 (2019), 157 | DOI | MR | Zbl

[19] M. Pliev, K. Ramdane, “Order unbounded orthogonally additive operators in vector lattices”, Mediterr. J. Math., 15:2 (2018), 55 | DOI | MR | Zbl

[20] M. Pliev, M. Weber, “Finite elements in some vector lattices of nonlinear operators”, Positivity, 22:1 (2018), 245–260 | DOI | MR | Zbl

[21] M. Pliev, M. Weber, “Disjointness and order projections in the vector lattices of abstract Uryson operators”, Positivity, 20:3 (2016), 695–707 | DOI | MR | Zbl

[22] A. Schep, “Positive diagonal and triangular operators”, J. Oper. Theory, 3:2 (2016), 165–178 | MR | Zbl