A version of Schwarz's lemma for mappings with weighted bounded distortion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 423-432
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class of mappings generalizing qusiregular mappings. Every mapping from this class is defined in a domain of Euclidean $n$-space and possesses the following properties: it is open, continuous, and discrete, it belongs locally to the Sobolev class $W^{1}_{q}$, it has finite distortion and nonnegative Jacobian, and its function of weighted $(p,q)$-distortion is integrable to a certian power depending on $p$ and $q$, where $n-1$. We obtain an analog of Schwarz's lemma for such mappings provided that $p\geqslant n$. The technique used is based on the spherical symmetrization procedure and the notion of Grötzsch condenser.
Keywords:
capacitary estimates, mappings with weighted bounded distortion, Schwarz's lemma, spherical symmetrization.
Mots-clés : Grötzsch condenser
Mots-clés : Grötzsch condenser
@article{SEMR_2021_18_1_a45,
author = {M. V. Tryamkin},
title = {A version of {Schwarz's} lemma for mappings with weighted bounded distortion},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {423--432},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/}
}
TY - JOUR AU - M. V. Tryamkin TI - A version of Schwarz's lemma for mappings with weighted bounded distortion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 423 EP - 432 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/ LA - en ID - SEMR_2021_18_1_a45 ER -
M. V. Tryamkin. A version of Schwarz's lemma for mappings with weighted bounded distortion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 423-432. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/