A version of Schwarz's lemma for mappings with weighted bounded distortion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 423-432

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of mappings generalizing qusiregular mappings. Every mapping from this class is defined in a domain of Euclidean $n$-space and possesses the following properties: it is open, continuous, and discrete, it belongs locally to the Sobolev class $W^{1}_{q}$, it has finite distortion and nonnegative Jacobian, and its function of weighted $(p,q)$-distortion is integrable to a certian power depending on $p$ and $q$, where $n-1$. We obtain an analog of Schwarz's lemma for such mappings provided that $p\geqslant n$. The technique used is based on the spherical symmetrization procedure and the notion of Grötzsch condenser.
Keywords: capacitary estimates, mappings with weighted bounded distortion, Schwarz's lemma, spherical symmetrization.
Mots-clés : Grötzsch condenser
@article{SEMR_2021_18_1_a45,
     author = {M. V. Tryamkin},
     title = {A version of {Schwarz's} lemma for mappings with weighted bounded distortion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {423--432},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - A version of Schwarz's lemma for mappings with weighted bounded distortion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 423
EP  - 432
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/
LA  - en
ID  - SEMR_2021_18_1_a45
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T A version of Schwarz's lemma for mappings with weighted bounded distortion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 423-432
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/
%G en
%F SEMR_2021_18_1_a45
M. V. Tryamkin. A version of Schwarz's lemma for mappings with weighted bounded distortion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 423-432. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/