Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a45, author = {M. V. Tryamkin}, title = {A version of {Schwarz's} lemma for mappings with weighted bounded distortion}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {423--432}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/} }
TY - JOUR AU - M. V. Tryamkin TI - A version of Schwarz's lemma for mappings with weighted bounded distortion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 423 EP - 432 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/ LA - en ID - SEMR_2021_18_1_a45 ER -
M. V. Tryamkin. A version of Schwarz's lemma for mappings with weighted bounded distortion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 423-432. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/
[1] J.R. Muir, Complex analysis: a modern first course in function theory, John Wiley Sons, 2015 | MR | Zbl
[2] B.V. Šabat, “On the theory of quasiconformal mappings in space”, Soviet Math. Dokl., 1 (1960), 730–733 | MR
[3] K. Ikoma, “On a theorem of Schwarz type for quasiconformal mappings in space”, Nagoya Math. J., 29 (1967), 19–30 | DOI | MR
[4] F.W. Gehring, G.J. Martin, B.P. Palka, An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings, Math. Surveys Monogr., 216, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl
[5] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, 1989 | MR | Zbl
[6] S. Rickman, Quasiregular Mappings, Springer-Verlag, Berlin, 1993 | MR | Zbl
[7] E.A. Sevost'yanov, Investigation of space mappings by the geometric method, Naukova dumka, Kiev, 2014 (in Russian)
[8] M.V. Tryamkin, “Modulus inequalities for mappings with weighted bounded $(p,q)$-distortion”, Sib. Math. J., 56:6 (2015), 1114–1132 | DOI | MR | Zbl
[9] M.V. Tryamkin, “On asymptotic curves and values in the theory of mappings with weighted bounded distortion”, Sib. Elektron. Mat. Izv., 12 (2015), 688–697 | MR | Zbl
[10] M.V. Tryamkin, “Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion”, Russian Math. (Iz. VUZ), 60:1 (2016), 76–80 | DOI | MR | Zbl
[11] M.V. Tryamkin, “Boundary correspondence for homeomorphisms with weighted bounded $(p,q)$-distortion”, Math. Notes, 102:3-4 (2017), 591–595 | DOI | MR | Zbl
[12] A.N. Baykin, S.K. Vodop'yanov, “Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded $(p,q)$-distortion”, Sib. Math. J., 56:2 (2015), 237–261 | DOI | MR | Zbl
[13] F.W. Gehring, “Symmetrization of rings in space”, Trans. Amer. Math. Soc., 101 (1961), 499–519 | DOI | MR | Zbl
[14] J. Sarvas, “Symmetrization of condensers in $n$-space”, Ann. Acad. Sci. Fenn. Ser A. I. Math., 522 (1972), 1–44 | MR
[15] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006 | MR | Zbl
[16] K. Kuratowski, Topology, v. II, Academic Press, 1968 | MR | Zbl
[17] V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, 1985 | MR | Zbl