A version of Schwarz's lemma for mappings with weighted bounded distortion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 423-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of mappings generalizing qusiregular mappings. Every mapping from this class is defined in a domain of Euclidean $n$-space and possesses the following properties: it is open, continuous, and discrete, it belongs locally to the Sobolev class $W^{1}_{q}$, it has finite distortion and nonnegative Jacobian, and its function of weighted $(p,q)$-distortion is integrable to a certian power depending on $p$ and $q$, where $n-1$. We obtain an analog of Schwarz's lemma for such mappings provided that $p\geqslant n$. The technique used is based on the spherical symmetrization procedure and the notion of Grötzsch condenser.
Keywords: capacitary estimates, mappings with weighted bounded distortion, Schwarz's lemma, spherical symmetrization.
Mots-clés : Grötzsch condenser
@article{SEMR_2021_18_1_a45,
     author = {M. V. Tryamkin},
     title = {A version of {Schwarz's} lemma for mappings with weighted bounded distortion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {423--432},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - A version of Schwarz's lemma for mappings with weighted bounded distortion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 423
EP  - 432
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/
LA  - en
ID  - SEMR_2021_18_1_a45
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T A version of Schwarz's lemma for mappings with weighted bounded distortion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 423-432
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/
%G en
%F SEMR_2021_18_1_a45
M. V. Tryamkin. A version of Schwarz's lemma for mappings with weighted bounded distortion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 423-432. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a45/

[1] J.R. Muir, Complex analysis: a modern first course in function theory, John Wiley Sons, 2015 | MR | Zbl

[2] B.V. Šabat, “On the theory of quasiconformal mappings in space”, Soviet Math. Dokl., 1 (1960), 730–733 | MR

[3] K. Ikoma, “On a theorem of Schwarz type for quasiconformal mappings in space”, Nagoya Math. J., 29 (1967), 19–30 | DOI | MR

[4] F.W. Gehring, G.J. Martin, B.P. Palka, An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings, Math. Surveys Monogr., 216, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl

[5] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, 1989 | MR | Zbl

[6] S. Rickman, Quasiregular Mappings, Springer-Verlag, Berlin, 1993 | MR | Zbl

[7] E.A. Sevost'yanov, Investigation of space mappings by the geometric method, Naukova dumka, Kiev, 2014 (in Russian)

[8] M.V. Tryamkin, “Modulus inequalities for mappings with weighted bounded $(p,q)$-distortion”, Sib. Math. J., 56:6 (2015), 1114–1132 | DOI | MR | Zbl

[9] M.V. Tryamkin, “On asymptotic curves and values in the theory of mappings with weighted bounded distortion”, Sib. Elektron. Mat. Izv., 12 (2015), 688–697 | MR | Zbl

[10] M.V. Tryamkin, “Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion”, Russian Math. (Iz. VUZ), 60:1 (2016), 76–80 | DOI | MR | Zbl

[11] M.V. Tryamkin, “Boundary correspondence for homeomorphisms with weighted bounded $(p,q)$-distortion”, Math. Notes, 102:3-4 (2017), 591–595 | DOI | MR | Zbl

[12] A.N. Baykin, S.K. Vodop'yanov, “Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded $(p,q)$-distortion”, Sib. Math. J., 56:2 (2015), 237–261 | DOI | MR | Zbl

[13] F.W. Gehring, “Symmetrization of rings in space”, Trans. Amer. Math. Soc., 101 (1961), 499–519 | DOI | MR | Zbl

[14] J. Sarvas, “Symmetrization of condensers in $n$-space”, Ann. Acad. Sci. Fenn. Ser A. I. Math., 522 (1972), 1–44 | MR

[15] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006 | MR | Zbl

[16] K. Kuratowski, Topology, v. II, Academic Press, 1968 | MR | Zbl

[17] V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, 1985 | MR | Zbl