Some remarks on rotation theorems for complex polynomials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 369-376

Voir la notice de l'article provenant de la source Math-Net.Ru

For any complex polynomial $P(z)=c_0+c_1z+...+c_nz^n, c_n\not=0,$ having all its zeros in the unit disk $|z|\le 1,$ we consider the behavior of the function (arg$P(e^{i\theta}))'_{\theta}$ when the real argument $\theta$ changes. We give some sharp estimates of this function involving of the values of $P(e^{i\theta}),$ arg$P(e^{i\theta})$ or the coefficients $c_k, k=0,1,n-1,n.$
Keywords: complex polynomials, rotation theorems, inequalities, boundary Schwarz lemma, rational functions.
@article{SEMR_2021_18_1_a44,
     author = {V. N. Dubinin},
     title = {Some remarks on rotation theorems for complex polynomials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {369--376},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a44/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Some remarks on rotation theorems for complex polynomials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 369
EP  - 376
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a44/
LA  - en
ID  - SEMR_2021_18_1_a44
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Some remarks on rotation theorems for complex polynomials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 369-376
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a44/
%G en
%F SEMR_2021_18_1_a44
V. N. Dubinin. Some remarks on rotation theorems for complex polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 369-376. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a44/