Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a44, author = {V. N. Dubinin}, title = {Some remarks on rotation theorems for complex polynomials}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {369--376}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a44/} }
V. N. Dubinin. Some remarks on rotation theorems for complex polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 369-376. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a44/
[1] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Texts in Math., 161, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[2] V.N. Dubinin, “Distortion theorems for polynomials on a circle”, Sb. Math., 191:12 (2000), 1797–1807 | DOI | MR | Zbl
[3] V.N. Dubinin, “On an application of conformal maps to inequalities for rational functions”, Izv. Math., 66:2 (2002), 285–297 | DOI | MR | Zbl
[4] V.N. Dubinin, “The Shwarz inequality on the boundary for functions regular in the disk”, J. Math. Sci., (N.Y.), 122:6 (2004), 3623–3629 | DOI | MR | Zbl
[5] V.N. Dubinin, “Applications of Schwarz's lemma to inequalities for entire functions with constraints on zeros”, J. Math. Sci., (N.Y.), 143:3 (2007), 3069–3076 | DOI | MR | Zbl
[6] V.N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russ. Math. Surv., 67:4 (2012), 599–684 | DOI | MR | Zbl
[7] V.N. Dubinin, “On holomorphic self-mappings of the unit disk”, Sib. Électron. Math. Izv., 16 (2019), 1633–1639 | DOI | MR | Zbl
[8] V.V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | MR | Zbl
[9] V.V. Goryainov, “Some inequalities for holomorphic self-maps of the unit disc with two fixed points”, Contemporary Mathematics, 699, 2017, 129–136 | DOI | MR | Zbl
[10] N.K. Govil, P. Kumar, “On sharpening of an inequality of Turán”, Appl. Anal. Discrete Math., 13:3 (2019), 711–720 | DOI | MR
[11] M.H. Gulzar, B.A. Zargar, R. Akhter, “Inequalities for the polar derivative of a polynomial”, J. Anal., 28:4 (2020), 923–929 | DOI | MR | Zbl
[12] A. Hussain, A. Ahmad, “Generalizations of some Bernstein-type inequalities for the polar derivative of a polynomial”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 66:2 (2020), 371–379 | DOI | MR | Zbl
[13] S.I. Kalmykov, “About multipoint distortion theorems for rational functions”, Sib. Math. J., 61:1 (2020), 85–94 | DOI | MR | Zbl
[14] P. Kumar, “On the inequalities concerning polynomials”, Complex Anal. Oper. Theory, 14:6 (2020), 65 | DOI | MR | Zbl
[15] X. Li, R.N. Mohapatra, R.S. Rodriguez, “Bernstein-type inequalities for rational functions with prescribed poles”, J. Lond. Math. Soc., II. Ser., 51:3 (1995), 523–531 | DOI | MR | Zbl
[16] P.R. Mercer, “Boundary Schwarz inequalities arising from Rogosinski's lemma”, J. Class. Anal., 12:2 (2018), 93–97 | DOI | MR | Zbl
[17] P.R. Mercer, “An improved Schwarz lemma at the boundary”, Open Math., 16 (2018), 1140–1144 | DOI | MR | Zbl
[18] G.V. Milovanović, A. Mir, A. Ahmad, “Certain estimates of Turán's-type for the maximum modulus of the polar derivative of a polynomial”, Publ. Inst. Math. (Beograd) (N.S.), 108:122 (2020), 121–130 | DOI | MR
[19] N.A. Rather, I. Dar, A. Iqbal, Some inequalities for polynomials with restricted zeros, Annali dell'Universitá di Ferrara. Sezione, 7, Scienze matematiche, 2020 | MR
[20] N.A. Rather, I. Dar, A. Iqbal, “Some extensions of a theorem of paul Turán concerning polynomials”, Kragujevac Journal of Mathematics, 46:6 (2020), 969–979
[21] N.A. Rather, I.A. Dar, “Some applications of the Boundary Schwarz lemma for Polynomials with restricted zeros”, Applied Mathematics E-Notes, 20 (2020), 422–431 | MR | Zbl
[22] N.A. Rather, I. Dar, A. Iqbal, “Inequalities for the derivative of polynomials with restricted zeros”, Korean J. Math., 28:4 (2020), 931–942 | MR | Zbl
[23] N.A. Rather, A. Iqbal, I. Dar, “Inequalities concerning the polar derivatives of polynomials with restricted zeros”, Nonlinear Funct. Anal. Appl., 24:4 (2019), 813–826 | MR | Zbl
[24] S.L. Wali, W.M. Shah, “Applications of the Schwarz lemma to inequalities for rational functions with prescribed poles”, J. Anal., 25:1 (2017), 43–53 | DOI | MR | Zbl
[25] S.L. Wali, A. Liman, “Refinements of some polynomial inequalities with restricted zeros”, J. Anal., 25:2 (2017), 291–299 | DOI | MR | Zbl
[26] S.L. Wali, W.M. Shah, “Some applications of Dubinin's lemma to rational functions with prescribed poles”, J. Math. Anal. Appl., 450:1 (2017), 769–779 | DOI | MR | Zbl