Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 136-159
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ be an open set in $R^n$, $n\ge2$, and $E$ be a relatively closed subset of $\Omega$. In this paper we obtain a criterion of equality $L^1_{1,\omega}(\Omega\setminus E)=L^1_{1,\omega}(\Omega)$ in terms of $E$ as an $NC_{1,\omega}$-set in $\Omega$ with $A_1$-weight $\omega$. In addition, we establish exact characterizations of $NC_{1,\omega}$-sets in terms of $NED_{1,\omega}$-sets and of the $(1,\omega)$-girth condition. In the case $\omega\equiv1$, these results complete the studies of Vodop'yanov and Gol'dstein on removable sets for $L^1_p(\Omega)$, $p\in(1,+\infty)$.
Keywords:
Sobolev space, capacity and modulus of condenser, Muckenhoupt weight, removable set.
@article{SEMR_2021_18_1_a40,
author = {V. A. Shlyk},
title = {Removable sets for {Sobolev} spaces with {Muckenhoupt} $A_1$-weight},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {136--159},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a40/}
}
V. A. Shlyk. Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 136-159. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a40/