Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 136-159

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be an open set in $R^n$, $n\ge2$, and $E$ be a relatively closed subset of $\Omega$. In this paper we obtain a criterion of equality $L^1_{1,\omega}(\Omega\setminus E)=L^1_{1,\omega}(\Omega)$ in terms of $E$ as an $NC_{1,\omega}$-set in $\Omega$ with $A_1$-weight $\omega$. In addition, we establish exact characterizations of $NC_{1,\omega}$-sets in terms of $NED_{1,\omega}$-sets and of the $(1,\omega)$-girth condition. In the case $\omega\equiv1$, these results complete the studies of Vodop'yanov and Gol'dstein on removable sets for $L^1_p(\Omega)$, $p\in(1,+\infty)$.
Keywords: Sobolev space, capacity and modulus of condenser, Muckenhoupt weight, removable set.
@article{SEMR_2021_18_1_a40,
     author = {V. A. Shlyk},
     title = {Removable sets for {Sobolev} spaces with {Muckenhoupt} $A_1$-weight},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {136--159},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a40/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 136
EP  - 159
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a40/
LA  - en
ID  - SEMR_2021_18_1_a40
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 136-159
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a40/
%G en
%F SEMR_2021_18_1_a40
V. A. Shlyk. Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 136-159. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a40/