Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a39, author = {A. P. Kopylov}, title = {Unique determination of~conformal type {for~domains.~III}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {104--111}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a39/} }
A. P. Kopylov. Unique determination of~conformal type for~domains.~III. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 104-111. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a39/
[1] A.P. Kopylov, “Unique determination of conformal type for domains”, Sib. Elektron. Mat. Izv., 16 (2019), 692–708 | Zbl
[2] A.P. Kopylov, “Unique determination of conformal type for domains. II”, Sib. Elektron. Mat. Izv., 16 (2019), 1205–1214 | Zbl
[3] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | Zbl
[4] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Springer, Berlin–Heidelberg–New York, 1973 | Zbl
[5] A.P. Kopylov, “On unique determination of 3-connected plane domains by relative conformal moduli of pairs of boundary components”, Dokl. Math., 93:3 (2016), 262–263 | Zbl
[6] G.M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, 26, AMS, Providence, RI, 1969 | Zbl
[7] O. Teichmüller, “Untersuchungen über konforme und quasikonforme Abbildung”, Deutsche Math., 3 (1938), 621–678 | Zbl
[8] F.W. Gehring, “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Annals of Mathematics Studies, 66 (1971), 175–193 | Zbl
[9] F.W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Am. Math. Soc., 103 (1962), 353–393 | Zbl
[10] F.W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114:1-2 (1965), 1–70 | Zbl