Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a38, author = {E. N. Poroshenko and E. I. Timoshenko}, title = {Partially commutative groups and {Lie} algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {668--693}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a38/} }
TY - JOUR AU - E. N. Poroshenko AU - E. I. Timoshenko TI - Partially commutative groups and Lie algebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 668 EP - 693 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a38/ LA - en ID - SEMR_2021_18_1_a38 ER -
E. N. Poroshenko; E. I. Timoshenko. Partially commutative groups and Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 668-693. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a38/
[1] S.G. Afanaseva, E.I. Timoshenko, “Partially commutative metabelian pro-$p$-groups”, Sib. Math. J., 60:4 (2019), 559–564 | DOI | MR | Zbl
[2] V.A. Blatherwick, “Centraliser dimension of free partially commutative nilpotent groups of class 2”, Glasg. Math J., 50:2 (2008), 251–269 | DOI | MR | Zbl
[3] V. Ya. Bloshchitsyn, E.I. Timoshenko, “Comparison between universal theories of partially commutative metabelian groups”, Sib. Math. J., 58:3 (2017), 382–391 | DOI | MR | Zbl
[4] L.A. Bokut, “A base of free polynilpotent Lie algebras”, Algebra Logika, 2:4 (1963), 13–19 | MR | Zbl
[5] O. Chapuis, “Universal theory of certain solvable groups and bounded Ore group rings”, J. Algebra, 176:2 (1995), 368–391 | DOI | MR | Zbl
[6] O. Chapuis, “$\forall$-free metabelian groups”, J. Symb. Log., 62:1 (1997), 159–174 | DOI | MR | Zbl
[7] R. Charney, “An introduction to right-angled Artin groups”, Geom. Dedicata, 125:1 (2007), 141–158 | DOI | MR | Zbl
[8] C. Droms, “Isomorphisms of graph groups”, Proc. Am. Math. Soc., 100 (1987), 407–408 | DOI | MR | Zbl
[9] G. Duchamp, D. Krob, “The free partially commutative Lie algebra: Bases and ranks”, Adv. Math., 95:1 (1992), 92–126 | DOI | MR | Zbl
[10] G. Duchamp, D. Krob, “Free partially commutative structures”, J. Algebra, 156:2 (1993), 318–361 | DOI | MR | Zbl
[11] A.J. Duncan, V.N. Remeslennikov, A.V. Treier, “A survey of free partially commutative groups”, J. Phys. Conf. Ser., 1441 (2020), 012136 | DOI | MR
[12] Ch.K. Gupta, “A faithful matrix representation for certain centre-by-metabelian groups”, J. Aust. Math. Soc., 10 (1969), 451–464 | DOI | MR | Zbl
[13] Ch.K. Gupta, E.I. Timoshenko, “Partially commutative metabelian groups: centralizers and elementary equivelence”, Algebra Logic, 48:3 (2009), 173–192 | DOI | MR | Zbl
[14] Ch.K. Gupta, E.I. Timoshenko, “Universal theories for partially commutative metabelian groups”, Algebra Logic, 50:1 (2011), 1–16 | MR | Zbl
[15] Ch.K. Gupta, E.I. Timoshenko, “Properties and universal theories for partially commutative nilpotent metabelian groups”, Algebra Logic, 51:4 (2012), 285–305 | DOI | MR | Zbl
[16] K.H. Kim, L. Makar-Limanov, J. Neggers, F.W. Roush, “Graph algebras”, J. Algebra, 64 (1980), 46–51 | DOI | MR | Zbl
[17] K.H. Kim, F.W. Roush, “Homology of certain algebrais defined by graphs”, J. Pure Appl. Algebra, 17 (1980), 179–186 | DOI | MR | Zbl
[18] V.D. Mazurov, E.I. Khukhro (eds.), The Kourovka notebook. Unsolved problems in group theory, 19th ed., Sobolev Institut of Mathematics, Novosibirsk, 2018 | MR
[19] M.R. Laurence, “A generating set for the automorphisms group of a graph group”, J. London Math. Soc. (2), 52:2 (1995), 318–334 | DOI | MR | Zbl
[20] A.A. Mischenko, A.V. Treyer, “Commuting graphs for partially commutative nilpotent $\mathbb{Q}$-groups of class 2”, Sib. Électron. Mat. Izv., 4 (2007), 460–481 | MR
[21] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl
[22] G.A. Noskov, “The image of automorphism group of a graph group under the Abelinization map”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 83–102 | Zbl
[23] E.N. Poroshenko, “Bases for partially commutative Lie algebras”, Algebra Logic, 50:5 (2011), 405–417 | DOI | MR | Zbl
[24] E.N. Poroshenko, “Bases for partially commutative nilpotent Lie algebras”, Algebra and Model Theory, 8, eds. Pinus A.G. et al., NSTU, Novosibirsk, 2011, 83–96 | MR | Zbl
[25] E.N. Poroshenko, “Centralizers in partially commutative Lie algebras”, Algebra Logic, 51:4 (2012), 351–371 | DOI | MR | Zbl
[26] E.N. Poroshenko, E.I. Timoshenko, “Universal equivalence of partially commutative metabelian Lie algebras”, J. Algebra, 384 (2013), 143–168 | DOI | MR | Zbl
[27] E.N. Poroshenko, “On universal equivalence of partially commutative metabelian Lie algebras”, Commun. Algebra, 43:2 (2015), 746–762 | DOI | MR | Zbl
[28] E.N. Poroshenko, “Universal equivalence of partially commutative Lie algebras”, Algebra Logic, 56:2 (2017), 133–148 | DOI | MR | Zbl
[29] E.N. Poroshenko, “Universal equivalence of some countably generated partially commutative structures”, Sib. Math. J., 58:2 (2017), 296–304 | DOI | MR | Zbl
[30] E.N. Poroshenko, “Elementary equivalence of partially commutative Lie rings and algebras”, Algebra Logic, 56:4 (2017), 348–352 | DOI | MR | Zbl
[31] E.N. Poroshenko, “On universal theories of partially commutative Lie algebras defined by graphs without triangles, squares, and isolated vertices”, Sib. Électron. Mat. Izv. (to appear)
[32] V.N. Remeslennikov, A.V. Treier, “Structure of the automorphism group for partially commutative class two nilpotent groups”, Algebra Logic, 49:1 (2010), 43–67 | DOI | MR | Zbl
[33] N.S. Romanovskii, E.I. Timoshenko, “Elementary equivalence and direct product decomposition of partially commutative groups of varieties”, Sib. Math. J., 61:3 (2020), 538–541 | DOI | MR | Zbl
[34] A.I. Shirshov, “On free Lie rings”, Mat. Sb., N. Ser., 45(87):2 (1958), 113–122 | MR | Zbl
[35] A.L. Shmelkin, “Free polynilpotent groups”, Izv. AN SSSR, Ser. Mat., 28 (1964), 91–122 | MR | Zbl
[36] E.I. Timoshenko, “Universal equivalence of partially commutative metabelian groups”, Algebra Logic, 49:2 (2010), 177–196 | DOI | MR | Zbl
[37] E.I. Timoshenko, “A Mal'tsev basis for a partially commutative nilpotent metabelian group”, Algebra Logic, 50:5 (2011), 439–446 | DOI | MR | Zbl
[38] E.I. Timoshenko, Endomorphisms and universal theories of solvable groups, NSTU, Novosibirsk, 2013
[39] E.I. Timoshenko, “Quasivarieties generated by partially commutative groups”, Sib. Math. J., 54:4 (2013), 722–730 | DOI | MR | Zbl
[40] E.I. Timoshenko, “On a presentation of the automorphism group of a partially commutative metabelian group”, Math. Notes, 97:2 (2015), 275–283 | DOI | MR | Zbl
[41] E.I. Timoshenko, “Cenralizers dimensions and universal theories for partially commutative metabelian groups”, Algebra Logic, 56:2 (2017), 149–170 | DOI | MR | Zbl
[42] E.I. Timoshenko, “Cenralizers dimensions of partially commutative metabelian groups”, Algebra Logic, 57:1 (2018), 69–80 | DOI | MR | Zbl
[43] E.I. Timoshenko, “On splittings, subgroups, and theories of partially commutative metabelian groups”, Sib. Math. J., 59:3 (2018), 536–541 | DOI | MR | Zbl
[44] E.I. Timoshenko, “On embedding of partially commutative metabelian groups to matrix groups”, Int. J. Group Theory, 7:4 (2018), 17–26 | MR | Zbl
[45] E.I. Timoshenko, “Automorphisms of partially commutative metabelian groups”, Algebra Logika, 59 (2020), 239–259 | DOI | MR | Zbl
[46] E.I. Timoshenko, “Basis of partially commutative metabelian group”, Izvestiya: mathematics (to appear)
[47] P.V. Ushakov, “IA-Automorphisms of metabelian products of two Abelian groups”, Math. Notes, 70:3 (2001), 403–412 | DOI | MR | Zbl