Partially commutative groups and Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 668-693.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of results on partially commutative groups and partially commutative Lie algebras.
Keywords: Lie algebra, partially commutative group, partially commutative Lie algebra, varieties of group, varieties of Lie algebras, basis, centralizer, centralizer dimension, nilpotent group, nilpotent Lie algebra, metabelian group, metabelian Lie algebra, universal theory, elementary theory.
Mots-clés : group, group automorphism, decomposition of a group, pro-$p$-group
@article{SEMR_2021_18_1_a38,
     author = {E. N. Poroshenko and E. I. Timoshenko},
     title = {Partially commutative groups and {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {668--693},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a38/}
}
TY  - JOUR
AU  - E. N. Poroshenko
AU  - E. I. Timoshenko
TI  - Partially commutative groups and Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 668
EP  - 693
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a38/
LA  - en
ID  - SEMR_2021_18_1_a38
ER  - 
%0 Journal Article
%A E. N. Poroshenko
%A E. I. Timoshenko
%T Partially commutative groups and Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 668-693
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a38/
%G en
%F SEMR_2021_18_1_a38
E. N. Poroshenko; E. I. Timoshenko. Partially commutative groups and Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 668-693. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a38/

[1] S.G. Afanaseva, E.I. Timoshenko, “Partially commutative metabelian pro-$p$-groups”, Sib. Math. J., 60:4 (2019), 559–564 | DOI | MR | Zbl

[2] V.A. Blatherwick, “Centraliser dimension of free partially commutative nilpotent groups of class 2”, Glasg. Math J., 50:2 (2008), 251–269 | DOI | MR | Zbl

[3] V. Ya. Bloshchitsyn, E.I. Timoshenko, “Comparison between universal theories of partially commutative metabelian groups”, Sib. Math. J., 58:3 (2017), 382–391 | DOI | MR | Zbl

[4] L.A. Bokut, “A base of free polynilpotent Lie algebras”, Algebra Logika, 2:4 (1963), 13–19 | MR | Zbl

[5] O. Chapuis, “Universal theory of certain solvable groups and bounded Ore group rings”, J. Algebra, 176:2 (1995), 368–391 | DOI | MR | Zbl

[6] O. Chapuis, “$\forall$-free metabelian groups”, J. Symb. Log., 62:1 (1997), 159–174 | DOI | MR | Zbl

[7] R. Charney, “An introduction to right-angled Artin groups”, Geom. Dedicata, 125:1 (2007), 141–158 | DOI | MR | Zbl

[8] C. Droms, “Isomorphisms of graph groups”, Proc. Am. Math. Soc., 100 (1987), 407–408 | DOI | MR | Zbl

[9] G. Duchamp, D. Krob, “The free partially commutative Lie algebra: Bases and ranks”, Adv. Math., 95:1 (1992), 92–126 | DOI | MR | Zbl

[10] G. Duchamp, D. Krob, “Free partially commutative structures”, J. Algebra, 156:2 (1993), 318–361 | DOI | MR | Zbl

[11] A.J. Duncan, V.N. Remeslennikov, A.V. Treier, “A survey of free partially commutative groups”, J. Phys. Conf. Ser., 1441 (2020), 012136 | DOI | MR

[12] Ch.K. Gupta, “A faithful matrix representation for certain centre-by-metabelian groups”, J. Aust. Math. Soc., 10 (1969), 451–464 | DOI | MR | Zbl

[13] Ch.K. Gupta, E.I. Timoshenko, “Partially commutative metabelian groups: centralizers and elementary equivelence”, Algebra Logic, 48:3 (2009), 173–192 | DOI | MR | Zbl

[14] Ch.K. Gupta, E.I. Timoshenko, “Universal theories for partially commutative metabelian groups”, Algebra Logic, 50:1 (2011), 1–16 | MR | Zbl

[15] Ch.K. Gupta, E.I. Timoshenko, “Properties and universal theories for partially commutative nilpotent metabelian groups”, Algebra Logic, 51:4 (2012), 285–305 | DOI | MR | Zbl

[16] K.H. Kim, L. Makar-Limanov, J. Neggers, F.W. Roush, “Graph algebras”, J. Algebra, 64 (1980), 46–51 | DOI | MR | Zbl

[17] K.H. Kim, F.W. Roush, “Homology of certain algebrais defined by graphs”, J. Pure Appl. Algebra, 17 (1980), 179–186 | DOI | MR | Zbl

[18] V.D. Mazurov, E.I. Khukhro (eds.), The Kourovka notebook. Unsolved problems in group theory, 19th ed., Sobolev Institut of Mathematics, Novosibirsk, 2018 | MR

[19] M.R. Laurence, “A generating set for the automorphisms group of a graph group”, J. London Math. Soc. (2), 52:2 (1995), 318–334 | DOI | MR | Zbl

[20] A.A. Mischenko, A.V. Treyer, “Commuting graphs for partially commutative nilpotent $\mathbb{Q}$-groups of class 2”, Sib. Électron. Mat. Izv., 4 (2007), 460–481 | MR

[21] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl

[22] G.A. Noskov, “The image of automorphism group of a graph group under the Abelinization map”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 83–102 | Zbl

[23] E.N. Poroshenko, “Bases for partially commutative Lie algebras”, Algebra Logic, 50:5 (2011), 405–417 | DOI | MR | Zbl

[24] E.N. Poroshenko, “Bases for partially commutative nilpotent Lie algebras”, Algebra and Model Theory, 8, eds. Pinus A.G. et al., NSTU, Novosibirsk, 2011, 83–96 | MR | Zbl

[25] E.N. Poroshenko, “Centralizers in partially commutative Lie algebras”, Algebra Logic, 51:4 (2012), 351–371 | DOI | MR | Zbl

[26] E.N. Poroshenko, E.I. Timoshenko, “Universal equivalence of partially commutative metabelian Lie algebras”, J. Algebra, 384 (2013), 143–168 | DOI | MR | Zbl

[27] E.N. Poroshenko, “On universal equivalence of partially commutative metabelian Lie algebras”, Commun. Algebra, 43:2 (2015), 746–762 | DOI | MR | Zbl

[28] E.N. Poroshenko, “Universal equivalence of partially commutative Lie algebras”, Algebra Logic, 56:2 (2017), 133–148 | DOI | MR | Zbl

[29] E.N. Poroshenko, “Universal equivalence of some countably generated partially commutative structures”, Sib. Math. J., 58:2 (2017), 296–304 | DOI | MR | Zbl

[30] E.N. Poroshenko, “Elementary equivalence of partially commutative Lie rings and algebras”, Algebra Logic, 56:4 (2017), 348–352 | DOI | MR | Zbl

[31] E.N. Poroshenko, “On universal theories of partially commutative Lie algebras defined by graphs without triangles, squares, and isolated vertices”, Sib. Électron. Mat. Izv. (to appear)

[32] V.N. Remeslennikov, A.V. Treier, “Structure of the automorphism group for partially commutative class two nilpotent groups”, Algebra Logic, 49:1 (2010), 43–67 | DOI | MR | Zbl

[33] N.S. Romanovskii, E.I. Timoshenko, “Elementary equivalence and direct product decomposition of partially commutative groups of varieties”, Sib. Math. J., 61:3 (2020), 538–541 | DOI | MR | Zbl

[34] A.I. Shirshov, “On free Lie rings”, Mat. Sb., N. Ser., 45(87):2 (1958), 113–122 | MR | Zbl

[35] A.L. Shmelkin, “Free polynilpotent groups”, Izv. AN SSSR, Ser. Mat., 28 (1964), 91–122 | MR | Zbl

[36] E.I. Timoshenko, “Universal equivalence of partially commutative metabelian groups”, Algebra Logic, 49:2 (2010), 177–196 | DOI | MR | Zbl

[37] E.I. Timoshenko, “A Mal'tsev basis for a partially commutative nilpotent metabelian group”, Algebra Logic, 50:5 (2011), 439–446 | DOI | MR | Zbl

[38] E.I. Timoshenko, Endomorphisms and universal theories of solvable groups, NSTU, Novosibirsk, 2013

[39] E.I. Timoshenko, “Quasivarieties generated by partially commutative groups”, Sib. Math. J., 54:4 (2013), 722–730 | DOI | MR | Zbl

[40] E.I. Timoshenko, “On a presentation of the automorphism group of a partially commutative metabelian group”, Math. Notes, 97:2 (2015), 275–283 | DOI | MR | Zbl

[41] E.I. Timoshenko, “Cenralizers dimensions and universal theories for partially commutative metabelian groups”, Algebra Logic, 56:2 (2017), 149–170 | DOI | MR | Zbl

[42] E.I. Timoshenko, “Cenralizers dimensions of partially commutative metabelian groups”, Algebra Logic, 57:1 (2018), 69–80 | DOI | MR | Zbl

[43] E.I. Timoshenko, “On splittings, subgroups, and theories of partially commutative metabelian groups”, Sib. Math. J., 59:3 (2018), 536–541 | DOI | MR | Zbl

[44] E.I. Timoshenko, “On embedding of partially commutative metabelian groups to matrix groups”, Int. J. Group Theory, 7:4 (2018), 17–26 | MR | Zbl

[45] E.I. Timoshenko, “Automorphisms of partially commutative metabelian groups”, Algebra Logika, 59 (2020), 239–259 | DOI | MR | Zbl

[46] E.I. Timoshenko, “Basis of partially commutative metabelian group”, Izvestiya: mathematics (to appear)

[47] P.V. Ushakov, “IA-Automorphisms of metabelian products of two Abelian groups”, Math. Notes, 70:3 (2001), 403–412 | DOI | MR | Zbl