Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a37, author = {A. S. Popov}, title = {Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {703--709}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/} }
TY - JOUR AU - A. S. Popov TI - Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 703 EP - 709 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/ LA - en ID - SEMR_2021_18_1_a37 ER -
%0 Journal Article %A A. S. Popov %T Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 703-709 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/ %G en %F SEMR_2021_18_1_a37
A. S. Popov. Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 703-709. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/
[1] A.N. Kazakov, V.I. Lebedev, “Gauss-type quadrature formulas for the sphere, invariant with respect to dihedral group”, Proc. Steklov Inst. Math., 203 (1995), 89–99 | MR | Zbl
[2] A.S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Model., 9:6 (1994), 535–546 | DOI | MR | Zbl
[3] A.S. Popov, “The cubature formulas on a sphere invariant with respect to a dihedral group of rotations with inversion $D_{6h}$”, Numer. Analysis Appl., 6:1 (2013), 49–53 | DOI | MR | Zbl
[4] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $D_{4h}$”, Sib. Électron. Mat. Izv., 12 (2015), 457–464 | MR | Zbl
[5] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group $D_{2h}$”, Sib. Électron. Mat. Izv., 13 (2016), 252–259 | MR | Zbl
[6] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $D_{5d}$”, Sib. Électron. Mat. Izv., 15 (2018), 389–396 | MR | Zbl
[7] A.S. Popov, “Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$”, Sib. Électron. Mat. Izv., 16 (2019), 1196–1204 | DOI | MR | Zbl
[8] A.S. Popov, “Cubature formulas on the sphere that are invariant under the transformations of the dihedral group of rotations $D_4$”, Sib. Électron. Mat. Izv., 17 (2020), 964–970 | DOI | MR | Zbl
[9] A.S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Sib. Zh. Vychisl. Mat., 5:4 (2002), 367–372 | MR
[10] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Chapter 12, Nauka, M., 1989 | MR | Zbl
[11] F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, Dover, New York, 1956 | MR | Zbl
[12] S.L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sib. Mat. Zh., 3:5 (1962), 769–796 | MR | Zbl
[13] V.A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 | MR | Zbl
[14] V.A. Ditkin, L.A. Lyusternik, “On a method of practical harmonic analysis on a sphere”, Vychisl. Mat. Vychisl. Tekhn., 1953:1 (1953), 3–13 | MR | Zbl
[15] A.S. Popov, “Cubature formulae for a sphere which are invariant with respect to the tetrahedral group”, Comput. Math. Math. Phys., 35:3 (1995), 369–374 | MR | Zbl
[16] A.D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl