Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 703-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for finding the best cubature formulas (in a sense) on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion is described. This algorithm is applied for finding parameters of all the best cubature formulas of this symmetry type up to the 35th order of accuracy.
Keywords: numerical integration, dihedral group of rotations.
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2021_18_1_a37,
     author = {A. S. Popov},
     title = {Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {703--709},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 703
EP  - 709
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/
LA  - en
ID  - SEMR_2021_18_1_a37
ER  - 
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 703-709
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/
%G en
%F SEMR_2021_18_1_a37
A. S. Popov. Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 703-709. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a37/

[1] A.N. Kazakov, V.I. Lebedev, “Gauss-type quadrature formulas for the sphere, invariant with respect to dihedral group”, Proc. Steklov Inst. Math., 203 (1995), 89–99 | MR | Zbl

[2] A.S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Model., 9:6 (1994), 535–546 | DOI | MR | Zbl

[3] A.S. Popov, “The cubature formulas on a sphere invariant with respect to a dihedral group of rotations with inversion $D_{6h}$”, Numer. Analysis Appl., 6:1 (2013), 49–53 | DOI | MR | Zbl

[4] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $D_{4h}$”, Sib. Électron. Mat. Izv., 12 (2015), 457–464 | MR | Zbl

[5] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group $D_{2h}$”, Sib. Électron. Mat. Izv., 13 (2016), 252–259 | MR | Zbl

[6] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $D_{5d}$”, Sib. Électron. Mat. Izv., 15 (2018), 389–396 | MR | Zbl

[7] A.S. Popov, “Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$”, Sib. Électron. Mat. Izv., 16 (2019), 1196–1204 | DOI | MR | Zbl

[8] A.S. Popov, “Cubature formulas on the sphere that are invariant under the transformations of the dihedral group of rotations $D_4$”, Sib. Électron. Mat. Izv., 17 (2020), 964–970 | DOI | MR | Zbl

[9] A.S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Sib. Zh. Vychisl. Mat., 5:4 (2002), 367–372 | MR

[10] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Chapter 12, Nauka, M., 1989 | MR | Zbl

[11] F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, Dover, New York, 1956 | MR | Zbl

[12] S.L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sib. Mat. Zh., 3:5 (1962), 769–796 | MR | Zbl

[13] V.A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 | MR | Zbl

[14] V.A. Ditkin, L.A. Lyusternik, “On a method of practical harmonic analysis on a sphere”, Vychisl. Mat. Vychisl. Tekhn., 1953:1 (1953), 3–13 | MR | Zbl

[15] A.S. Popov, “Cubature formulae for a sphere which are invariant with respect to the tetrahedral group”, Comput. Math. Math. Phys., 35:3 (1995), 369–374 | MR | Zbl

[16] A.D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl