Dual null field method for Dirichlet problems of Laplace's equation in circular domains with circular holes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 393-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dual techniques have been widely used in many engineering papers, to deal with singularity and ill-conditioning of the boundary element method (BEM). In this paper, we consider Laplace's equation with circular domains with one circular hole. The explicit algebraic equations of the first and second kinds of the null field method (NFM) are provided for applications. Traditionally, the first and the second kinds of the NFM are used for the Dirichlet and the Neumann problems, respectively. To bypass the degenerate scales of Dirichlet problems, however, the second and the first kinds of the NFM are used for the exterior and the interior boundaries, simultaneously, called the dual NFM (DNFM) in this paper. The excellent stability and the optimal convergence rates are explored in this paper. By using the simple Gaussian elimination or the iteration methods, numerical solutions can be easily obtained. Recently, the study on degenerate scales is active, many removal techniques are proposed, where the advanced solution methods may be needed, such as the truncated singular value decomposition (TSVD) and the overdetermined systems. In contrast, the solution methods of the DNFM in this paper are much simpler, with a little risk of the algorithm singularity from degenerate scales.
Keywords: null field method, boundary element method, dual null field method.
Mots-clés : Laplace's equations, dual techniques
@article{SEMR_2021_18_1_a35,
     author = {M. G. Lee and L. P. Zhang and Z. C. Li and A. L. Kazakov},
     title = {Dual null field method for {Dirichlet} problems of {Laplace's} equation in circular domains with circular holes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {393--422},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a35/}
}
TY  - JOUR
AU  - M. G. Lee
AU  - L. P. Zhang
AU  - Z. C. Li
AU  - A. L. Kazakov
TI  - Dual null field method for Dirichlet problems of Laplace's equation in circular domains with circular holes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 393
EP  - 422
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a35/
LA  - en
ID  - SEMR_2021_18_1_a35
ER  - 
%0 Journal Article
%A M. G. Lee
%A L. P. Zhang
%A Z. C. Li
%A A. L. Kazakov
%T Dual null field method for Dirichlet problems of Laplace's equation in circular domains with circular holes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 393-422
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a35/
%G en
%F SEMR_2021_18_1_a35
M. G. Lee; L. P. Zhang; Z. C. Li; A. L. Kazakov. Dual null field method for Dirichlet problems of Laplace's equation in circular domains with circular holes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 393-422. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a35/

[1] C.A. Brebbia, J.C.F. Telles, L.C. Wrobel, Boundary element techniques. Theory and applications in engineering, Springer-Verlag, Berlin etc, 1984 | MR | Zbl

[2] I.L. Chen, J.-T. Chen, S.-R. Kuo, M.T. Liang, “A new method for true and spurious eigensolutions of arbitrary captives using the combined Helmholtz exterior integral equation formulation method”, J. Acoust. Soc., Am., 109:3 (2001), 982–999 | DOI

[3] J.-T. Chen, H. Han, S.-R. Kuo, S.-K. Kao, “Regularization methods for iII-conditioned system of the integral equation of the first kind with the logarithmic kernel”, Inverse Probl. Sci. Eng., 22:7 (2014), 1176–1195 | DOI | MR | Zbl

[4] J.-T. Chen, H.K. Hong, “Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series”, Appl. Mech. Rev., 52:1 (1999), 17–33 | DOI

[5] J.-T. Chen, W.S. Huang, Y. Fan, S.-K. Kao, “Revisit of the daul BEM using SVD updating technique”, J. Mechanics, 31:5 (2015), 505–514 | DOI

[6] J.-T. Chen, W.-C. Shen, “Null-field approach for Laplace problems with circular boundaries using degenerate kernels”, Numer. Meth. PDE, 25:1 (2009), 63–86 | DOI | MR | Zbl

[7] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, series, and products, Academic Press, New York etc., 1980 | MR | Zbl

[8] H.-T. Huang, M.-G. Lee, Z.-C. Li, J.Y. Chiang, “Null field and interior field methods for Laplace's equation in actually punctured disks”, Abstr. Appl. Anal., 2013, 927873 | MR | Zbl

[9] M.-G. Lee, Z.-C. Li, H.-T. Huang, J.Y. Chiang, “Conservative schemes and degenerate scale problems of null-field methods for Dirichlet problems of Laplace's equation”, Eng. Anal. Bound. Elem., 37:1 (2013), 95–106 | DOI | MR | Zbl

[10] M.-G. Lee, Z.-C. Li, H.-T. Huang, J.Y. Chiang, “Neumann problems of Laplace's equation in circular domains with circular holes by methods of field equations”, Eng. Anal. Bound. Elem., 51 (2015), 156–173 | DOI | MR | Zbl

[11] M.-G. Lee, Z.-C. Li, L.P. Zhang, H.-T. Huang, J.Y. Chiang, “Algorithm singularity of the null-field method for Dirichlet problems of Laplace's equation in annular and circular domains”, Eng. Anal. Bound. Elem., 41 (2014), 160–172 | DOI | MR | Zbl

[12] Z.-C. Li, Combined methods for elliptic equations with singularities, interfaces and infinities, Mathematics and its Applications, 444, Kluwer Academic Publishers, Dordrecht, 1998 | MR | Zbl

[13] Z.-C. Li, J.Y. Chiang, H.-T. Huang, M.-G. Lee, “The interior field method for Laplace's equation in circular domains with circular holes”, Eng. Anal. Bound. Elem., 67 (2016), 173–185 | DOI | MR | Zbl

[14] Z.-C. Li, H.-T. Huang, C.-P. Liaw, M.-G. Lee, “The null-field method of Dirichlet problems of Laplace's equation on circular domains with circular holes”, Eng. Anal. Bound. Elem., 36:3 (2012), 477–491 | DOI | MR | Zbl

[15] Z. Li, R. Mathon, P. Sermer, “Boundary methods for solving elliptic problem with singularities and interfaces”, SIAM J. Numer. Anal., 24 (1987), 487–498 | DOI | MR | Zbl

[16] Z.-C. Li, T.-T. Lu, H.-Y. Hu, A.H.-D. Cheng, Trefftz and collocation methods, WIT Press, Southampton, 2008 | MR | Zbl

[17] Z.-C. Li, H.T. Huang, Y. Wei, A.H.-D. Cheng, Effective condition number for numerical partial differential equations, Science Press, Beijing; Alpha Science International Ltd, Oxford, 2014 | MR

[18] Z.-C. Li, L.-P. Zhang, Y. Wei, M.-G. Lee, J.Y. Chiang, “Boundary methods for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes”, Eng. Anal. Bound. Elem., 61 (2015), 91–103 | DOI | MR | Zbl

[19] D. Palaniappan, “Electrostatoics of two intersecting conducting cylinders”, Math. Comput Modelling, 36:7-8 (2002), 821–830 | DOI | MR | Zbl

[20] A. Portela, M.H. Aliabadi, D.P. Rooke, “The dual boundary element method: Effective implementation for crack problems”, Int. J. Numer. Methods Eng., 33:6 (1992), 1269–1287 | DOI | MR | Zbl

[21] L.-P. Zhang, Z.-C. Li, M.-G. Lee, “Boundary methods for mixed boundary problems of Laplace's equation in elliptic domains with elliptic holes”, Eng. Anal. Bound. Elem., 63 (2016), 92–104 | DOI | MR | Zbl