Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a34, author = {E. Yu. Derevtsov and S. V. Maltseva}, title = {Recovery of a vector field in the cylinder by its jointly known {NMR} images and ray transforms}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {86--103}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a34/} }
TY - JOUR AU - E. Yu. Derevtsov AU - S. V. Maltseva TI - Recovery of a vector field in the cylinder by its jointly known NMR images and ray transforms JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 86 EP - 103 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a34/ LA - en ID - SEMR_2021_18_1_a34 ER -
%0 Journal Article %A E. Yu. Derevtsov %A S. V. Maltseva %T Recovery of a vector field in the cylinder by its jointly known NMR images and ray transforms %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 86-103 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a34/ %G en %F SEMR_2021_18_1_a34
E. Yu. Derevtsov; S. V. Maltseva. Recovery of a vector field in the cylinder by its jointly known NMR images and ray transforms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 86-103. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a34/
[1] V. Sharafutdinov, “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse Probl., 23:6 (2007), 2603–2627 | Zbl
[2] I.E. Svetov, “Reconstruction of solenoidal part of a three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes”, Numer. Analysis Appl., 5:3 (2012), 271–283 | Zbl
[3] I. Svetov, “Slice-by-slice numerical solution of $3D$-vector tomography problem”, Journal of Physics: Conference Series, 410 (2013), 012042
[4] I.E. Svetov, S.V. Maltseva, A.K. Louis, “The method of approximate inverse in slice-by-slice vector tomography problems”, Lecture Notes in Computer Science, 11974, 2020, 487–494 | Zbl
[5] E. Yu. Derevtsov, “Numerical solution of a problem of refractive tomography in a tube domain”, Sib. Zh. Ind. Mat., 18:4 (2015), 30–41 | Zbl
[6] S.V. Maltseva, I.E. Svetov, A.P. Polyakova, “Reconstruction of a function and its singular support in a cylinder by tomographic data”, Eurasian J. Math. and Comp. Appl., 8:2 (2020), 86–97
[7] L. Alvarez, F.P. Guichard, P.-L. Lions, J.-M. Morel, “Axioms and fundamental equations of image processing”, Arch. Rat. Mech. Anal., 123:3 (1993), 199–257 | Zbl
[8] N. Beckmann, “High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo”, Magn. Reson. Med., 44:2 (2000), 252–258
[9] S.V. Maltseva, A.A. Cherevko, A.K. Khe, A.E. Akulov, A.A. Savelov, A.A. Tulupov, E. Yu. Derevtsov, M.P. Moshkin, A.P. Chupakhin, “Reconstruction of unbroken vasculature of mouse by varying the slope of the scan plane in MRI”, Journal of Physics. Conference Series, 677:1 (2016), 012003
[10] S.V. Maltseva, A.A. Cherevko, A.K. Khe, A.E. Akulov, A.A. Savelov, A.A. Tulupov, E. Yu. Derevtsov, M.P. Moshkin, A.P. Chupakhin, “Reconstruction of Complex Vasculature by Varying the Slope of the Scan Plane in High-Field Magnetic Resonance Imaging”, Applied Magnetic Resonance, 47:1 (2016), 23–39
[11] J.L. Kinsey, “Fourier transform Doppler spectroscopy: A new means of obtaining velocity-angle distributions in scattering experiments”, J. Chem. Phys., 66:6 (1977), 2560–2565
[12] S.P. Juhlin, “Doppler tomography”, Proc. 15th Annual Intern. Conf. IEEE, EMBS, 1993, 212–213
[13] E. Yu. Derevtsov, V.V. Pikalov, “Reconstruction of vector fields and their singularities from ray transform”, Numer. Analysis Appl., 4:1 (2011), 21–35 | Zbl
[14] E. Yu. Derevtsov, I.E. Svetov, “Tomography of tensor fields in the plane”, Eurasian J. Math. Comp. Applications, 3:2 (2015), 24–68
[15] N.E. Kochin, Vector calculus and the beginnings of tensor calculus, Izdat. Akad. Nauk SSSR, M., 1951 | MR
[16] H. Weyl, “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | Zbl
[17] S. Deans, The Radon Transform and Some of its Applications, John Wiley Sons, New York etc, 1983 | Zbl