Detection of the corner structures in 3D arrays using scalable masks
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 61-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Scalable masks for the selection of angular structures in three-dimensional (3D) digital images are considered, which are used in processing with a 3D window sliding over the image and convolved with image fragments. The model of scalable 3D mask was developed based on expanding smaller mask along its sides and edges. In this case, the submatrices remain unchanged, and new elements are added by repeating the elements of the submatrix, preserving the structure of the corner. This approach helps to design the hierarchical computations of 3D data.
Keywords: image processing, sliding window, scalable mask, corner detection.
@article{SEMR_2021_18_1_a33,
     author = {I. G. Kazantsev and B. O. Mukhametzhanova and K. T. Iskakov},
     title = {Detection of the corner structures in {3D} arrays using scalable masks},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a33/}
}
TY  - JOUR
AU  - I. G. Kazantsev
AU  - B. O. Mukhametzhanova
AU  - K. T. Iskakov
TI  - Detection of the corner structures in 3D arrays using scalable masks
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 61
EP  - 71
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a33/
LA  - en
ID  - SEMR_2021_18_1_a33
ER  - 
%0 Journal Article
%A I. G. Kazantsev
%A B. O. Mukhametzhanova
%A K. T. Iskakov
%T Detection of the corner structures in 3D arrays using scalable masks
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 61-71
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a33/
%G en
%F SEMR_2021_18_1_a33
I. G. Kazantsev; B. O. Mukhametzhanova; K. T. Iskakov. Detection of the corner structures in 3D arrays using scalable masks. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 61-71. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a33/

[1] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Pearson, NY, 2018

[2] T. Tuytelaars, K. Mikolajczyk, “Local Invariant Feature Detectors: A Survey”, Foundations and Trends in Computer Graphics and Vision, 3:3 (2008), 177–280

[3] R. Reisenhofer, E.J. King, “Edge, Ridge, and Blob Detection with Symmetric Molecules”, SIAM J. Imaging Sci., 12:4 (2019), 1585–1626

[4] T. Lindeberg, “Spatio-temporal scale selection in video data”, J. Math. Imaging Vis., 60:4 (2018), 525–562 | Zbl

[5] W. Zhang, C. Sun, T. Breckon, N. Alshammari, “Discrete curvature representations for noise robust image corner detection”, IEEE Trans. Image Process., 28:9 (2019), 4444–4459

[6] A. Dutta, A. Kar, B.N. Chatterji, “Corner detection algorithms for digital images in last three decades”, IETE Technical Review, 25:3 (2008), 123–133

[7] J. Chen, L. Zou, J. Zhang, L. Dou, “The Comparison and Application of Corner Detection Algorithms”, Journal of Multimedia, 4 (2009), 435–441

[8] E. Rosten, R. Porte, T. Drummond, “Faster and Better: A Machine Learning Approach to Corner Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:1 (2010), 105–119

[9] B.H. Shekar, K.P. Uma, “Kirsch directional derivatives based shot boundary detection: an efficient and accurate method”, Procedia Computer Science, 58 (2015), 565–571

[10] M. Pietikainen, G. Zhao, “Two decades of local binary patterns: A survey”, Advances in Independent Component Analysis and Learning Machines, Chapter 9, Academic Press, 2015, 175–210

[11] A. Buades, R. Grompone von Gioi, J. Navarro, “Joint contours, corner and T-junction detection: an approach inspired by the mammal visual system”, J. Math. Imaging Vision, 60:4 (2018), 341–354 | Zbl

[12] H. Liu, S. Tan, “Image regularizations based on the sparsity of corner points”, IEEE Trans. Image Process., 28:1 (2019), 72–87 | Zbl

[13] J. Ruiz-Alzola, R. Kikinis, C.-F. Westin, “Detection of point landmarks in multidimensional tensor data”, Signal Process., 81:10 (2001), 2243–2247

[14] I. Sipiran, B. Bustos, “Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes”, Visual Computer, 27:11 (2011), 963–976

[15] L.E. Ortiz, E.V. Cabrera, L.M. Gonçalves, “Depth data error modeling of the ZED 3D Vision sensor from stereolabs”, Electronic Letters on Computer Vision and Image Analysis, 17:1 (2018), 1–15

[16] I.G. Kazantsev, B. O. Mukhametzhanova, K.T. Iskakov, T. Mirgalikyzy, “Detection of the corner structures in images by scalable masks”, J. Appl. Ind. Math., 14 (2020), 73–84

[17] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins Univ. Press, Baltimore, 1996 | Zbl

[18] A.N. Shiryaev, Stochastic disorder problems, Probability Theory and Stochastic Modelling, 93, Springer, Cham, 2019 | Zbl

[19] A.A. Borovkov, “On estimation of parameters in the case of discontinuous densities”, Theory Probab. Appl., 63:2 (2018), 169–192 | Zbl