Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a32, author = {A. I. Kozhanov and N. N. Shadrina}, title = {Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {599--616}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/} }
TY - JOUR AU - A. I. Kozhanov AU - N. N. Shadrina TI - Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 599 EP - 616 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/ LA - en ID - SEMR_2021_18_1_a32 ER -
%0 Journal Article %A A. I. Kozhanov %A N. N. Shadrina %T Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 599-616 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/ %G en %F SEMR_2021_18_1_a32
A. I. Kozhanov; N. N. Shadrina. Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 599-616. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/
[1] V.P. Mikhailov, “About the first boundary value problem for a class of hypoelliptic equations”, Mat. Sb., N. Ser., 63(105):2 (1964), 238–264 | MR | Zbl
[2] Yu.A. Dubinskii, “On an abstract theorem and its applications to boundary value problems for nonclassical equations”, Mat. Sb., N. Ser., 79(121):1 (1969), 91–117 | MR | Zbl
[3] Yu.A. Dubinskii, “On some differential-operator equations of arbitrary order”, Mat. Sbor., N. Ser., 90(132):1 (1973), 3–22 | MR | Zbl
[4] V.K. Romanko, “Boundary value problems for a certain class of differential operators”, Differ. Uravn., 10:1 (1974), 117–131 | MR | Zbl
[5] V.K. Romanko, “Unique solvability of boundary value problems for some operator-differential equations”, Differ. Uravn., 13:2 (1977), 324–335 | MR | Zbl
[6] I.E. Egorov, “First boundary problem for a nonclassical equation”, Math. Notes, 42:3-4 (1987), 716–721 | DOI | MR | Zbl
[7] I.E. Egorov, V.E. Fedorov, Neclassicheskie Uravneniya Matematicheskoi Fiziki Vysokogo Poryadka, Izd. VTs SO RAN, Novosibirsk, 1995
[8] I.E. Egorov, V.E. Fedorov, I.M. Tikhonova, E.S. Efimova, “The Galerkin method for nonclassical equations of mathematical physics”, AIP Conference Proceedings, 1907 (2017), 020011 | DOI
[9] V.V. Shubin, “Boundary value problems for third-order equations with a discontinuous coefficient”, J. Math. Sci., New York, 198:5 (2014), 637–648 | DOI | MR | Zbl
[10] E.I. Atlasova, “Solvability of conjugate problems for quasiparabolic equations of third order”, Mat. Zamet. SVFU, 23:1 (2016), 16–27 | Zbl
[11] A.I. Kozhanov, S.V. Potapova, “Boundary value problems for odd order forward-backward-type differential equations with two time variables”, Sib. Math. J., 59:5 (2018), 870–884 | DOI | MR | Zbl
[12] S.L. Sobolev, Some applications of functional analysis in mathematical physics, Amer. Math. Soc., Providence, 1991 | MR | Zbl
[13] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968 | MR | Zbl
[14] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, Deutcher Verlag der Wissenschaften, Berlin, 1978 | MR | Zbl
[15] V.A. Trenogin, Functional Analysis, Nauka, M., 1980 | MR | Zbl