Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 599-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to study the solvability in Sobolev spaces of boundary value problems for third order differential equations with a discontinuous sign–variable coefficient at the highest derivative with respect to the time variable. Since the equation has a discontinuous leading coefficient, in addition to setting the boundary conditions it is also necessary to set some conjugation conditions. For the problems under study, existence and uniqueness theorems are proved for the class of regular solutions, i.e., for the solutions that have all Sobolev weak derivatives up to the third order in time variable and up to the second order in spatial variables.
Keywords: third order quasi-parabolic equations, discontinuous signvariable coefficient, boundary value problems, conjugation conditions, regular solutions, uniqueness.
Mots-clés : existence
@article{SEMR_2021_18_1_a32,
     author = {A. I. Kozhanov and N. N. Shadrina},
     title = {Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {599--616},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - N. N. Shadrina
TI  - Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 599
EP  - 616
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/
LA  - en
ID  - SEMR_2021_18_1_a32
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A N. N. Shadrina
%T Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 599-616
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/
%G en
%F SEMR_2021_18_1_a32
A. I. Kozhanov; N. N. Shadrina. Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign--variable coefficient. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 599-616. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a32/

[1] V.P. Mikhailov, “About the first boundary value problem for a class of hypoelliptic equations”, Mat. Sb., N. Ser., 63(105):2 (1964), 238–264 | MR | Zbl

[2] Yu.A. Dubinskii, “On an abstract theorem and its applications to boundary value problems for nonclassical equations”, Mat. Sb., N. Ser., 79(121):1 (1969), 91–117 | MR | Zbl

[3] Yu.A. Dubinskii, “On some differential-operator equations of arbitrary order”, Mat. Sbor., N. Ser., 90(132):1 (1973), 3–22 | MR | Zbl

[4] V.K. Romanko, “Boundary value problems for a certain class of differential operators”, Differ. Uravn., 10:1 (1974), 117–131 | MR | Zbl

[5] V.K. Romanko, “Unique solvability of boundary value problems for some operator-differential equations”, Differ. Uravn., 13:2 (1977), 324–335 | MR | Zbl

[6] I.E. Egorov, “First boundary problem for a nonclassical equation”, Math. Notes, 42:3-4 (1987), 716–721 | DOI | MR | Zbl

[7] I.E. Egorov, V.E. Fedorov, Neclassicheskie Uravneniya Matematicheskoi Fiziki Vysokogo Poryadka, Izd. VTs SO RAN, Novosibirsk, 1995

[8] I.E. Egorov, V.E. Fedorov, I.M. Tikhonova, E.S. Efimova, “The Galerkin method for nonclassical equations of mathematical physics”, AIP Conference Proceedings, 1907 (2017), 020011 | DOI

[9] V.V. Shubin, “Boundary value problems for third-order equations with a discontinuous coefficient”, J. Math. Sci., New York, 198:5 (2014), 637–648 | DOI | MR | Zbl

[10] E.I. Atlasova, “Solvability of conjugate problems for quasiparabolic equations of third order”, Mat. Zamet. SVFU, 23:1 (2016), 16–27 | Zbl

[11] A.I. Kozhanov, S.V. Potapova, “Boundary value problems for odd order forward-backward-type differential equations with two time variables”, Sib. Math. J., 59:5 (2018), 870–884 | DOI | MR | Zbl

[12] S.L. Sobolev, Some applications of functional analysis in mathematical physics, Amer. Math. Soc., Providence, 1991 | MR | Zbl

[13] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968 | MR | Zbl

[14] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, Deutcher Verlag der Wissenschaften, Berlin, 1978 | MR | Zbl

[15] V.A. Trenogin, Functional Analysis, Nauka, M., 1980 | MR | Zbl