Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 579-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of solutions for several models of living systems, presented as the Cauchy problem for nonlinear systems of delay differential equations, is investigated. A set of conditions providing exponentially decreasing estimates of the components of the solutions of the studied Cauchy problem is established. The parameters of exponential estimates are found as a solution of a nonlinear system of inequalities, based on the right part of the system of differential equations. Results of the studies on mathematical models arising in epidemiology, immunology, and physiology are presented.
Keywords: delay differential equations, initial problem, non-negative solutions, exponentially decreasing estimates of the solutions, mathematical models of living systems.
Mots-clés : M-matrix
@article{SEMR_2021_18_1_a31,
     author = {N. V. Pertsev},
     title = {Construction of exponentially decreasing estimates of solutions to a {Cauchy} problem for some nonlinear systems of delay differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {579--598},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/}
}
TY  - JOUR
AU  - N. V. Pertsev
TI  - Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 579
EP  - 598
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/
LA  - en
ID  - SEMR_2021_18_1_a31
ER  - 
%0 Journal Article
%A N. V. Pertsev
%T Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 579-598
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/
%G en
%F SEMR_2021_18_1_a31
N. V. Pertsev. Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 579-598. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/

[1] N.V. Pertsev, “Global solvability and estimates for solutions to the Cauchy problem for the retarded functional differential equations that are used to model living systems”, Sib. Math. J., 59:1 (2018), 113–125 | DOI | MR | Zbl

[2] N.V. Pertsev, “Exponential decay estimates for some components of solutions to the nonlinear delay differential equations of the living system models”, Sib. Math. J., 61:4 (2020), 715–724 | DOI | MR | Zbl

[3] J.K. Hale, Theory of functional differential equations, Springer-Verlag, New York etc, 1977 | MR | Zbl

[4] A. Berman, R.J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York etc, 1979 | MR | Zbl

[5] V.V. Voevodin, Yu.A. Kuznetsov, Matrices and computations, Nauka, M., 1984 | MR | Zbl

[6] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford Univ. Press, Oxford, 1992

[7] H. Hethcote, “The mathematics of infectious diseases”, SIAM Rev., 42:4 (2000), 599–653 | DOI | MR | Zbl

[8] B.P. Demidovich, Lectures on mathematical stability theory, Nauka, M., 1967 | MR | Zbl

[9] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Elements of the modern theory of functional-differential equations. Methods and applications, Institute of Computer Science, Izhevsk, 2002 | MR

[10] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer, Berlin, 2012 | MR | Zbl

[11] N.V. Pertsev, K.K. Loginov, V.A. Topchii, “Analysis of an epidemic mathematical model based on delay differential equations”, J. Appl. Ind. Math., 14:2 (2020), 396–406 | DOI | MR

[12] N. Pertsev, K. Loginov, G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Discrete Contin. Dyn. Syst., Ser. S, 13:9 (2020), 2365–2384 | MR | Zbl

[13] T.L. Sabatulina, “Positiveness conditions for the Cauchy function for differential equations with distributed delay”, Russ. Math., 54:11 (2010), 44–55 | DOI | MR | Zbl

[14] T.L. Sabatulina, V.V. Malygina, “On stability of a differential equation with aftereffect”, Russ. Math., 58:4 (2014), 20–34 | DOI | MR | Zbl