Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a31, author = {N. V. Pertsev}, title = {Construction of exponentially decreasing estimates of solutions to a {Cauchy} problem for some nonlinear systems of delay differential equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {579--598}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/} }
TY - JOUR AU - N. V. Pertsev TI - Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 579 EP - 598 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/ LA - en ID - SEMR_2021_18_1_a31 ER -
%0 Journal Article %A N. V. Pertsev %T Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 579-598 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/ %G en %F SEMR_2021_18_1_a31
N. V. Pertsev. Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 579-598. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a31/
[1] N.V. Pertsev, “Global solvability and estimates for solutions to the Cauchy problem for the retarded functional differential equations that are used to model living systems”, Sib. Math. J., 59:1 (2018), 113–125 | DOI | MR | Zbl
[2] N.V. Pertsev, “Exponential decay estimates for some components of solutions to the nonlinear delay differential equations of the living system models”, Sib. Math. J., 61:4 (2020), 715–724 | DOI | MR | Zbl
[3] J.K. Hale, Theory of functional differential equations, Springer-Verlag, New York etc, 1977 | MR | Zbl
[4] A. Berman, R.J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York etc, 1979 | MR | Zbl
[5] V.V. Voevodin, Yu.A. Kuznetsov, Matrices and computations, Nauka, M., 1984 | MR | Zbl
[6] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford Univ. Press, Oxford, 1992
[7] H. Hethcote, “The mathematics of infectious diseases”, SIAM Rev., 42:4 (2000), 599–653 | DOI | MR | Zbl
[8] B.P. Demidovich, Lectures on mathematical stability theory, Nauka, M., 1967 | MR | Zbl
[9] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Elements of the modern theory of functional-differential equations. Methods and applications, Institute of Computer Science, Izhevsk, 2002 | MR
[10] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer, Berlin, 2012 | MR | Zbl
[11] N.V. Pertsev, K.K. Loginov, V.A. Topchii, “Analysis of an epidemic mathematical model based on delay differential equations”, J. Appl. Ind. Math., 14:2 (2020), 396–406 | DOI | MR
[12] N. Pertsev, K. Loginov, G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Discrete Contin. Dyn. Syst., Ser. S, 13:9 (2020), 2365–2384 | MR | Zbl
[13] T.L. Sabatulina, “Positiveness conditions for the Cauchy function for differential equations with distributed delay”, Russ. Math., 54:11 (2010), 44–55 | DOI | MR | Zbl
[14] T.L. Sabatulina, V.V. Malygina, “On stability of a differential equation with aftereffect”, Russ. Math., 58:4 (2014), 20–34 | DOI | MR | Zbl