On a nonlinear differential equation in a Banach space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 332-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Navier-Stokes type equation is considered for which a generalized solution is constructed in the form of a series in powers of a specially introduced parameter and its convergence is proved. An example of a mixed problem for the Burgers equation is given.
Keywords: equations of Navier-Stokes type, Burgers equation, generalized solution, holomorphic dependence of a solution on a parameter.
@article{SEMR_2021_18_1_a28,
     author = {M. I. Besova and V. I. Kachalov},
     title = {On a nonlinear differential equation in a {Banach} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {332--337},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/}
}
TY  - JOUR
AU  - M. I. Besova
AU  - V. I. Kachalov
TI  - On a nonlinear differential equation in a Banach space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 332
EP  - 337
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/
LA  - ru
ID  - SEMR_2021_18_1_a28
ER  - 
%0 Journal Article
%A M. I. Besova
%A V. I. Kachalov
%T On a nonlinear differential equation in a Banach space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 332-337
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/
%G ru
%F SEMR_2021_18_1_a28
M. I. Besova; V. I. Kachalov. On a nonlinear differential equation in a Banach space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 332-337. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/

[1] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995 | MR | Zbl

[2] V.P. Maslov, Asymptotic methods and perturbation theory, Nauka, M., 1988 | MR | Zbl

[3] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Academic Press, New York etc, 1978 | MR | Zbl

[4] G.M. Khenkin, A.A. Shananin, “The Cauchy-Gelfand problem and the inverse problem for a first-order quasilinear equation”, Funct. Anal. Appl., 50:2 (2016), 131–142 | DOI | MR | Zbl

[5] A.B. Vasil'eva, V.F. Butuzov, Asymptotic expansions of solutions for singularly perturbed problems, Nauka, M., 1973 | Zbl

[6] S.A. Lomov, Introduction to the general theory of singular perturbations, Translations of Mathematical Monographs, 112, AMS, Providence, 1992 | DOI | MR | Zbl

[7] S.A. Lomov, I.S. Lomov, Fundamentals of the mathematical theory of the boundary layer, Moscow Publishing House University, M., 2011 | MR

[8] V.I. Kachalov, “On one method of solving singularly perturbed systems of Tikhonov's type”, Russ. Math., 62:6 (2018), 21–26 | DOI | MR | Zbl

[9] R. Richtmyer, Principles of advanced mathematical physics, v. II, Springer-Verlag, New York etc, 1981 | MR | Zbl

[10] O.A. Ladyzhenskaya, “The sixth millennium problem: Navier-Stokes equations, existence and smoothness”, Russ. Math. Surv., 58:2 (2003), 251–286 | DOI | MR | Zbl

[11] V.F. Butuzov, N.N. Nefedov, E.V. Fedotov, “Asymptotic solution of the linearized problem of the propagation of sound in a bounded medium with low viscosity”, U.S.S.R. Comput. Math. Math. Phys., 27:1 (1987), 146–153 | DOI | MR | Zbl

[12] S.G. Krein, Linear differential equations in Banach space, Translations of Mathematical Monographs, 29, AMS, Providence, 1972 | MR | Zbl

[13] V.I. Kachalov, S.A. Lomov, “Smoothness of solutions of differential equations with respect to a singular parameter”, Sov. Math., Dokl., 37:2 (1988), 465–467 | MR | Zbl

[14] E. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1939 | MR | Zbl