On a nonlinear differential equation in a Banach space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 332-337

Voir la notice de l'article provenant de la source Math-Net.Ru

An Navier-Stokes type equation is considered for which a generalized solution is constructed in the form of a series in powers of a specially introduced parameter and its convergence is proved. An example of a mixed problem for the Burgers equation is given.
Keywords: equations of Navier-Stokes type, Burgers equation, generalized solution, holomorphic dependence of a solution on a parameter.
@article{SEMR_2021_18_1_a28,
     author = {M. I. Besova and V. I. Kachalov},
     title = {On a nonlinear differential equation in a {Banach} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {332--337},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/}
}
TY  - JOUR
AU  - M. I. Besova
AU  - V. I. Kachalov
TI  - On a nonlinear differential equation in a Banach space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 332
EP  - 337
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/
LA  - ru
ID  - SEMR_2021_18_1_a28
ER  - 
%0 Journal Article
%A M. I. Besova
%A V. I. Kachalov
%T On a nonlinear differential equation in a Banach space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 332-337
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/
%G ru
%F SEMR_2021_18_1_a28
M. I. Besova; V. I. Kachalov. On a nonlinear differential equation in a Banach space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 332-337. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/