Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a28, author = {M. I. Besova and V. I. Kachalov}, title = {On a nonlinear differential equation in a {Banach} space}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {332--337}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/} }
TY - JOUR AU - M. I. Besova AU - V. I. Kachalov TI - On a nonlinear differential equation in a Banach space JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 332 EP - 337 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/ LA - ru ID - SEMR_2021_18_1_a28 ER -
M. I. Besova; V. I. Kachalov. On a nonlinear differential equation in a Banach space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 332-337. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a28/
[1] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995 | MR | Zbl
[2] V.P. Maslov, Asymptotic methods and perturbation theory, Nauka, M., 1988 | MR | Zbl
[3] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Academic Press, New York etc, 1978 | MR | Zbl
[4] G.M. Khenkin, A.A. Shananin, “The Cauchy-Gelfand problem and the inverse problem for a first-order quasilinear equation”, Funct. Anal. Appl., 50:2 (2016), 131–142 | DOI | MR | Zbl
[5] A.B. Vasil'eva, V.F. Butuzov, Asymptotic expansions of solutions for singularly perturbed problems, Nauka, M., 1973 | Zbl
[6] S.A. Lomov, Introduction to the general theory of singular perturbations, Translations of Mathematical Monographs, 112, AMS, Providence, 1992 | DOI | MR | Zbl
[7] S.A. Lomov, I.S. Lomov, Fundamentals of the mathematical theory of the boundary layer, Moscow Publishing House University, M., 2011 | MR
[8] V.I. Kachalov, “On one method of solving singularly perturbed systems of Tikhonov's type”, Russ. Math., 62:6 (2018), 21–26 | DOI | MR | Zbl
[9] R. Richtmyer, Principles of advanced mathematical physics, v. II, Springer-Verlag, New York etc, 1981 | MR | Zbl
[10] O.A. Ladyzhenskaya, “The sixth millennium problem: Navier-Stokes equations, existence and smoothness”, Russ. Math. Surv., 58:2 (2003), 251–286 | DOI | MR | Zbl
[11] V.F. Butuzov, N.N. Nefedov, E.V. Fedotov, “Asymptotic solution of the linearized problem of the propagation of sound in a bounded medium with low viscosity”, U.S.S.R. Comput. Math. Math. Phys., 27:1 (1987), 146–153 | DOI | MR | Zbl
[12] S.G. Krein, Linear differential equations in Banach space, Translations of Mathematical Monographs, 29, AMS, Providence, 1972 | MR | Zbl
[13] V.I. Kachalov, S.A. Lomov, “Smoothness of solutions of differential equations with respect to a singular parameter”, Sov. Math., Dokl., 37:2 (1988), 465–467 | MR | Zbl
[14] E. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1939 | MR | Zbl