Multiscale analysis of a model problem of a thermoelastic body with thin inclusions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 282-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model statical problem for a thermoelastic body with thin inclusions is studied. This problem incorporates two small positive parameters $\delta$ and $\varepsilon$, which describe the thickness of an individual inclusion and the distance between two neighboring inclusions, respectively. Relying on the variational formulation of the problem, by means of the modern methods of asymptotic analysis, we investigate the behavior of solutions as $\delta$ and $\varepsilon$ tend to zero. As the result, we construct two models corresponding to the limiting cases. At first, as $\delta \to 0$, we derive a limiting model in which inclusions are thin (of zero diameter). Then, from this limiting model, as $\varepsilon \to 0$, we derive a homogenized model, which describes effective behavior on the macroscopic scale, i.e., on the scale where there is no need to take into account each individual inclusion. The limiting passage as $\varepsilon \to 0$ is based on the use of homogenization theory. The final section of the article presents a series of numerical experiments for the established limiting models.
@article{SEMR_2021_18_1_a27,
     author = {S. A. Sazhenkov and I. V. Frankina and A. I. Furtsev and P. V. Gilev and A. G. Gorynin and O. G. Gorynina and V. M. Karnaev and E. I. Leonova},
     title = {Multiscale analysis of a model problem of a thermoelastic body with thin inclusions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {282--318},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a27/}
}
TY  - JOUR
AU  - S. A. Sazhenkov
AU  - I. V. Frankina
AU  - A. I. Furtsev
AU  - P. V. Gilev
AU  - A. G. Gorynin
AU  - O. G. Gorynina
AU  - V. M. Karnaev
AU  - E. I. Leonova
TI  - Multiscale analysis of a model problem of a thermoelastic body with thin inclusions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 282
EP  - 318
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a27/
LA  - en
ID  - SEMR_2021_18_1_a27
ER  - 
%0 Journal Article
%A S. A. Sazhenkov
%A I. V. Frankina
%A A. I. Furtsev
%A P. V. Gilev
%A A. G. Gorynin
%A O. G. Gorynina
%A V. M. Karnaev
%A E. I. Leonova
%T Multiscale analysis of a model problem of a thermoelastic body with thin inclusions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 282-318
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a27/
%G en
%F SEMR_2021_18_1_a27
S. A. Sazhenkov; I. V. Frankina; A. I. Furtsev; P. V. Gilev; A. G. Gorynin; O. G. Gorynina; V. M. Karnaev; E. I. Leonova. Multiscale analysis of a model problem of a thermoelastic body with thin inclusions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 282-318. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a27/

[1] A. Ainouz, “Two-scale homogenization of a Robin problem in perforated media”, Appl. Math. Sci., 1:33-36 (2007), 1789–1802 | MR | Zbl

[2] A. Ainouz, “Derivation of a convection process in a steady diffusion-transfer problem by homogenization”, Int. J. Appl. Math., 21:1 (2008), 83–97 | MR | Zbl

[3] A. Ainouz, “Homogenized double porosity models for poro-elastic media with interfacial flow barrier”, Math. Bohem., 136:4 (2011), 357–365 | DOI | MR | Zbl

[4] A. Ainouz, “Homogenization of a dual-permeability problem in two-component media with imperfect contact”, Appl. Math., Praha, 60:2 (2015), 185–196 | DOI | MR | Zbl

[5] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl

[6] G. Allaire, A. Damlamian, U. Hornung, “Two-scale convergence on periodic surfaces and applications”, Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media (May 1995), eds. A. Bourgeat et al., World Scientific Pub., Singapore, 1996, 15–25

[7] A.-L. Bessoud, F. Krasucki, M. Serpilli, “Plate-like and shell-like inclusions with high rigidity”, C. R., Math., Acad. Sci. Paris, 346:11-12 (2008), 697–702 | DOI | MR | Zbl

[8] A.-L. Bessoud, F. Krasucki, M. Serpilli, “Asymptotic analysis of shell-like inclusions with high rigidity”, J. Elasticity, 103:2 (2011), 153–172 | DOI | MR | Zbl

[9] V.V. Bolotin, Yu.N. Novichkov, Mechanics of multilayer structures, Mashinostroenie (Mechanical Engineering), M., 1980 (In Russian)

[10] G.A. Chechkin, A.L. Piatnitski, A.S. Shamaev, Homogenization. Methods and applications, Translations of Mathematical Monographs, 234, AMS, Providence, 2007 | DOI | MR | Zbl

[11] R.M. Christensen, Mechanics of Composite Materials, Wiley, New York, 1979

[12] D. Cioranescu, P. Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, 17, Oxford University Press, Oxford, 1999 | MR | Zbl

[13] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182-183 (2020), 100–111 | DOI

[14] A. Furtsev, E. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Int. J. Solids Struct., 202 (2020), 562–574 | DOI

[15] S.K. Golushko, “Direct and inverse problems in the mechanics of composite plates and shells”, Computational science and high performance computing, Russian-German advanced research workshop (Novosibirsk, Russia, September 30 to October 2, 2003), Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 88, eds. E. Krause et al., Springer, Berlin, 2005, 205–227 | DOI | Zbl

[16] S.K. Golushko, Yu.V. Nemirovsky, Direct and inverse problems of mechanics of elastic composite plates and shells of revolution, Fizmatlit, M., 2008

[17] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Methods Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[18] R.M. Jones, Mechanics of Composite Materials, CRC Press, New York, 2018

[19] N.A. Kazarinov, E.M. Rudoy, V. Yu. Slesarenko, V.V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comput. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | MR | Zbl

[20] A.M. Khludnev, “A weakly curved inclusion in an elastic body with separation”, Mech. Solids, 50:5 (2015), 591–601 | DOI | MR

[21] A. Khludnev, A.C. Esposito, L. Faella, “Optimal control of parameters for elastic body with thin inclusions”, J. Optim. Theory Appl., 184:1 (2020), 293–314 | DOI | MR | Zbl

[22] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000

[23] A. Khludnev, M. Negri, “Crack on the boundary of a thin elastic inclusion inside an elastic body”, ZAMM Z. Angew. Math. Mech., 92:5 (2012), 341–354 | DOI | MR | Zbl

[24] A.M. Khludnev, T.S. Popova, “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, ZAMM Z. Angew. Math. Mech., 97:11 (2017), 1406–1417 | MR

[25] A.M. Khludnev, T.S. Popova, “On junction problem with damage parameter for Timoshenko and rigid inclusions inside elastic body”, ZAMM Z. Angew. Math. Mech., 100:8 (2020), e202000063 | DOI | MR

[26] V.A. Kovtunenko, A.V. Zubkova, “Homogenization of the generalized Poisson-Nernst-Planck problem in a two-phase medium: correctors and estimates”, Appl. Anal., 100:2 (2021), 253–274 | DOI | MR | Zbl

[27] V.A. Kovtunenko, A.V. Zubkova, “Existence and two-scale convergence of the generalised Poisson-Nernst-Planck problem with non-linear interface conditions”, Eur. J. Appl. Math., 32 (2021), 1–28 | DOI | MR

[28] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[29] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl

[30] E. Rudoy, “Asymptotic justification of models of plates containing inside hard thin inclusions”, Technologies, 8:4 (2020), 59 | DOI

[31] E.M. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Sib. Électron. Mat. Izv., 17 (2020), 615–625 | DOI | MR | Zbl

[32] E.M. Rudoy, H. Itou, N.P. Lazarev, “Asymptotic justification of models of thin inclusions in an elastic bodies in antiplane shear problem”, J. Appl. Ind. Math., 24 (2021) | MR

[33] E. Sanchez-Palencia, “Problemes de perturbations lies aux phenomenes de conduction a travers des couches minces de grande resistivite”, J. Math. Pures Appl., 53 (1974), 251–270 | MR | Zbl

[34] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer, Berlin etc., 1980 | MR | Zbl

[35] V.V. Shcherbakov, “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[36] A.M. Skudra, F. Ja. Bulavs, Strength of reinforced plastics, Khimiya (Chemistry), M., 1982

[37] V.V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sb. Math., 191:7 (2000), 973–1014 | DOI | MR | Zbl

[38] V.V. Zhikov, “On two-scale convergence”, J. Math. Sci., New York, 120:3 (2004), 1328–1352 | DOI | MR | Zbl