A frictional contact problem with damage in viscoplasticity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 255-281

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a quasistatic contact problem with damage between a viscoplastic body and an obstacle the so-called foundation. The contact is modelled with a general normal compliance condition and the associated version of Coulomb's law of dry friction. We provide a variational formulation of the mechanical problem for which we establish an existence theorem of a weak solution including a regularity result.
Keywords: viscoplastic material, damage, Coulomb's law of dry friction, normal compliance, Rothe method, variational inequalities.
Mots-clés : quasistatic
@article{SEMR_2021_18_1_a26,
     author = {A. Kasri},
     title = {A frictional contact problem with damage in viscoplasticity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {255--281},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a26/}
}
TY  - JOUR
AU  - A. Kasri
TI  - A frictional contact problem with damage in viscoplasticity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 255
EP  - 281
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a26/
LA  - en
ID  - SEMR_2021_18_1_a26
ER  - 
%0 Journal Article
%A A. Kasri
%T A frictional contact problem with damage in viscoplasticity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 255-281
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a26/
%G en
%F SEMR_2021_18_1_a26
A. Kasri. A frictional contact problem with damage in viscoplasticity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 255-281. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a26/