Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a25, author = {A. A. Titova}, title = {On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {207--236}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/} }
TY - JOUR AU - A. A. Titova TI - On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 207 EP - 236 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/ LA - ru ID - SEMR_2021_18_1_a25 ER -
%0 Journal Article %A A. A. Titova %T On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 207-236 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/ %G ru %F SEMR_2021_18_1_a25
A. A. Titova. On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 207-236. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/
[1] D.V. Maklakov, Nonlinear problems of hydrodynamics of potential flows with unknown boundaries, Yanus-K, M., 1997 | Zbl
[2] J.-M. Vanden-Broeck, J.B Keller, “Free surface flow due to a sink”, J. Fluid Mech., 175 (1987), 109–117 | DOI | Zbl
[3] G.C. Hocking, “Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom”, J. Aust. Math. Soc., Ser. B, 26 (1985), 470–486 | DOI | MR | Zbl
[4] E.O. Tuck, J.-M. Vanden-Broeck, “A cusp-like free-surface flow due to a submerged source or sink”, J. Aust. Math. Soc., Ser. B, 25 (1984), 443–450 | DOI | MR | Zbl
[5] L.K. Forbes, G.C. Hocking, “Flow caused by a point sink in a fluid having a free surface”, J. Aust. Math. Soc., Ser. B, 32:2 (1990), 231–49 | DOI | MR | Zbl
[6] G.C. Hocking, L.K. Forbes, “Subcritical free-surface flow caused by a line source in a fluid of finite depth”, J. Eng. Math., 26:4 (1992), 455–466 | DOI | MR | Zbl
[7] C.J. Lustri, S.W. McCue, S.J. Chapman, “Exponential asymptotics of free surface flow due to a line source”, IMA J. Appl. Math., 78:4 (2013), 697–713 | DOI | MR | Zbl
[8] H. Mekias, J.-M. Vanden-Broeck, “Subcritical flow with a stagnation point due to a source beneath a free surface”, Phys. F. A: Fluid Dyn., 3:11 (1991), 2652–2658 | DOI | MR
[9] C.R. Dun, G.C. Hocking, “Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary”, J. Eng. Math., 29:1 (1995), 1–10 | DOI | MR | Zbl
[10] G.C. Hocking, “Infinite Froude number solutions to the problem of a submerged source or sink”, J. Aust. Math. Soc. Ser. B, 29:4 (1988), 401–409 | DOI | MR | Zbl
[11] B. Bouderah, H. Mekias, “A cybernetic approach to the problem of cusp free-surface flow caused by a line sink on a sloping bottom”, Kybernetes, 31:2 (2002), 305–316 | DOI | MR | Zbl
[12] A.A. Mestnikova, V.N. Starovoitov, “Free-surface potential flow of an ideal fluid due to a singular sink”, J. Phys. Conf. Ser., 722 (2016), 012035 | DOI
[13] A.A. Mestnikova, V.N. Starovoitov, “Steady free surface potential flow of an ideal fluid due to a singular sink on the flat bottom”, Nonlinear Anal. Real World Appl., 49 (2019), 111–136 | DOI | MR | Zbl
[14] P.I. Plotnikov, J.F. Toland, “Convexity of Stokes waves of extreme form”, Arch. Ration. Mech. Anal., 171:3 (2004), 349–416 | DOI | MR | Zbl
[15] L.E. Fraenkel, “A constructive existence proof for the extreme Stokes wave”, Arch. Ration. Mech. Anal., 183:2 (2007), 187–214 | DOI | MR | Zbl
[16] G. Keady, J. Norbury, “On the existence theory for irrotational water waves”, Math. Proc. Camb. Philos. Soc., 83 (1978), 137–157 | DOI | MR | Zbl
[17] M.A. Lavrent'ev, B.V. Shabat, Methods of the theory of functions of a complex variable, Nauka, M., 1965 ; 1973 | MR | Zbl
[18] F.D. Gakhov, Boundary Value Problems, Nauka, M., 1970 ; 1977 | MR | Zbl
[19] V.A. Zorich, Mathematical Analysis, v. II, MCCME, M., 2012 ; 2016 | MR | Zbl