On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 207-236
Voir la notice de l'article provenant de la source Math-Net.Ru
A two-dimensional stationary problem of a potential free-surface flow of an ideal incompressible fluid caused by a singular sink is considered. The sink is located at the top of a triangular ledge at the bottom. The problem is to determine the shape of the free boundary and the velocity field of the fluid. By employing a conformal map and the Levi-Civita technique, the problem is rewritten as an operator equation in a Hilbert space. It is proved that, for the Froude number greater than some particular value, there is a solution of the problem. It is established that the free boundary has a cusp at the point over the sink. It is shown that the inclination angle of the free surface is less than $\pi/2$ everywhere except at the cusp point, where is it equal to $\pi/2$.
Keywords:
ideal incompressible fluid, free surface, singular sink.
@article{SEMR_2021_18_1_a25,
author = {A. A. Titova},
title = {On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {207--236},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/}
}
TY - JOUR AU - A. A. Titova TI - On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 207 EP - 236 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/ LA - ru ID - SEMR_2021_18_1_a25 ER -
%0 Journal Article %A A. A. Titova %T On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 207-236 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/ %G ru %F SEMR_2021_18_1_a25
A. A. Titova. On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 207-236. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/