On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 207-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional stationary problem of a potential free-surface flow of an ideal incompressible fluid caused by a singular sink is considered. The sink is located at the top of a triangular ledge at the bottom. The problem is to determine the shape of the free boundary and the velocity field of the fluid. By employing a conformal map and the Levi-Civita technique, the problem is rewritten as an operator equation in a Hilbert space. It is proved that, for the Froude number greater than some particular value, there is a solution of the problem. It is established that the free boundary has a cusp at the point over the sink. It is shown that the inclination angle of the free surface is less than $\pi/2$ everywhere except at the cusp point, where is it equal to $\pi/2$.
Keywords: ideal incompressible fluid, free surface, singular sink.
@article{SEMR_2021_18_1_a25,
     author = {A. A. Titova},
     title = {On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {207--236},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/}
}
TY  - JOUR
AU  - A. A. Titova
TI  - On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 207
EP  - 236
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/
LA  - ru
ID  - SEMR_2021_18_1_a25
ER  - 
%0 Journal Article
%A A. A. Titova
%T On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 207-236
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/
%G ru
%F SEMR_2021_18_1_a25
A. A. Titova. On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 207-236. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a25/

[1] D.V. Maklakov, Nonlinear problems of hydrodynamics of potential flows with unknown boundaries, Yanus-K, M., 1997 | Zbl

[2] J.-M. Vanden-Broeck, J.B Keller, “Free surface flow due to a sink”, J. Fluid Mech., 175 (1987), 109–117 | DOI | Zbl

[3] G.C. Hocking, “Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom”, J. Aust. Math. Soc., Ser. B, 26 (1985), 470–486 | DOI | MR | Zbl

[4] E.O. Tuck, J.-M. Vanden-Broeck, “A cusp-like free-surface flow due to a submerged source or sink”, J. Aust. Math. Soc., Ser. B, 25 (1984), 443–450 | DOI | MR | Zbl

[5] L.K. Forbes, G.C. Hocking, “Flow caused by a point sink in a fluid having a free surface”, J. Aust. Math. Soc., Ser. B, 32:2 (1990), 231–49 | DOI | MR | Zbl

[6] G.C. Hocking, L.K. Forbes, “Subcritical free-surface flow caused by a line source in a fluid of finite depth”, J. Eng. Math., 26:4 (1992), 455–466 | DOI | MR | Zbl

[7] C.J. Lustri, S.W. McCue, S.J. Chapman, “Exponential asymptotics of free surface flow due to a line source”, IMA J. Appl. Math., 78:4 (2013), 697–713 | DOI | MR | Zbl

[8] H. Mekias, J.-M. Vanden-Broeck, “Subcritical flow with a stagnation point due to a source beneath a free surface”, Phys. F. A: Fluid Dyn., 3:11 (1991), 2652–2658 | DOI | MR

[9] C.R. Dun, G.C. Hocking, “Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary”, J. Eng. Math., 29:1 (1995), 1–10 | DOI | MR | Zbl

[10] G.C. Hocking, “Infinite Froude number solutions to the problem of a submerged source or sink”, J. Aust. Math. Soc. Ser. B, 29:4 (1988), 401–409 | DOI | MR | Zbl

[11] B. Bouderah, H. Mekias, “A cybernetic approach to the problem of cusp free-surface flow caused by a line sink on a sloping bottom”, Kybernetes, 31:2 (2002), 305–316 | DOI | MR | Zbl

[12] A.A. Mestnikova, V.N. Starovoitov, “Free-surface potential flow of an ideal fluid due to a singular sink”, J. Phys. Conf. Ser., 722 (2016), 012035 | DOI

[13] A.A. Mestnikova, V.N. Starovoitov, “Steady free surface potential flow of an ideal fluid due to a singular sink on the flat bottom”, Nonlinear Anal. Real World Appl., 49 (2019), 111–136 | DOI | MR | Zbl

[14] P.I. Plotnikov, J.F. Toland, “Convexity of Stokes waves of extreme form”, Arch. Ration. Mech. Anal., 171:3 (2004), 349–416 | DOI | MR | Zbl

[15] L.E. Fraenkel, “A constructive existence proof for the extreme Stokes wave”, Arch. Ration. Mech. Anal., 183:2 (2007), 187–214 | DOI | MR | Zbl

[16] G. Keady, J. Norbury, “On the existence theory for irrotational water waves”, Math. Proc. Camb. Philos. Soc., 83 (1978), 137–157 | DOI | MR | Zbl

[17] M.A. Lavrent'ev, B.V. Shabat, Methods of the theory of functions of a complex variable, Nauka, M., 1965 ; 1973 | MR | Zbl

[18] F.D. Gakhov, Boundary Value Problems, Nauka, M., 1970 ; 1977 | MR | Zbl

[19] V.A. Zorich, Mathematical Analysis, v. II, MCCME, M., 2012 ; 2016 | MR | Zbl