On solvability of some classes of transmission problems in a cylindrical space domain
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 176-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we examine the questions of regular solvability in the Sobolev spaces of the transmission problems with transmission conditions of imperfect contact type for parabolic second order systems in cylindrical space domains. A solution has all generalized derivatives occurring in the system summable to some power $p\in (1,\infty)$. At the interface the limit values of the conormal derivatives are expressed through the limit values of a solution. The problem does not belong to the class of classical diffraction problems and arises when describing heat-and-mass transfer processes in layered media. The proof relies on a priori bounds and the method of continuation in a parameter.
Keywords: discontinuous coefficients, parabolic system, heat-and-mass transfer, cylindrical space domain.
Mots-clés : transmission problem
@article{SEMR_2021_18_1_a24,
     author = {V. A. Belonogov and S. G. Pyatkov},
     title = {On solvability of some classes of transmission problems in a cylindrical space domain},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {176--206},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/}
}
TY  - JOUR
AU  - V. A. Belonogov
AU  - S. G. Pyatkov
TI  - On solvability of some classes of transmission problems in a cylindrical space domain
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 176
EP  - 206
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/
LA  - en
ID  - SEMR_2021_18_1_a24
ER  - 
%0 Journal Article
%A V. A. Belonogov
%A S. G. Pyatkov
%T On solvability of some classes of transmission problems in a cylindrical space domain
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 176-206
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/
%G en
%F SEMR_2021_18_1_a24
V. A. Belonogov; S. G. Pyatkov. On solvability of some classes of transmission problems in a cylindrical space domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 176-206. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/

[1] H.D. Baehr, K. Stephan, Heat and mass transfer, Springer, Berlin, 1998 | Zbl

[2] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, AMS, Providence, 1968 | DOI | MR | Zbl

[3] O.A. Ladyzhenskaya, V. Ya. Rivkind, N.N. Ural'tseva, “Classical solvability of diffraction problems in the case of elliptic and parabolic equations”, Sov. Math., Dokl., 5 (1965), 1249–1252 | Zbl

[4] O.A. Ladyzhenskaya, V. Ya. Rivkind, N.N. Ural'tseva, “The classical solvability of diffraction problems”, Proc. Mat. Inst. Steklova, 92 (1968), 132–166 | MR | Zbl

[5] O.A. Ladyzhenskaya, “On non-stationary operator equations and their applications to linear problems of mathematical physics”, Mat. Sb., N. Ser., 45(87) (1958), 123–158 | MR | Zbl

[6] O.A. Oleinik, “Equations of elliptic and parabolic type with discontinuous coefficients”, UMN, 14:5(89) (1959), 164–166

[7] O.A. Oleinik, “Boundary-value problems for linear elliptic and parabolic equations with discontinuous coefficients”, Transl., Ser. 2, Am. Math. Soc., 42 (1964), 175–194 | Zbl

[8] Z.G. Sheftel', “Solvability in $L_p$ and classical solvability of general boundary-value problems for elliptic equations with discontinuous coefficients”, UMN, 19:4(118) (1964), 230–232 | MR

[9] Z.G. Sheftel', “Estimates in $L_p$ of solutions of elliptic equations with discontinuous coefficients and satisfying general boundary conditions and conjugacy conditions”, Sov. Math., Dokl., 4 (1963), 321–324 | MR | Zbl

[10] M. Schechter, “A generalization of the problem of transmission”, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 14 (1960), 207–236 | MR | Zbl

[11] N.V. Zhitarashu, “Apriori estimates and solvability of general boundary value problems for general elliptic systems with discontinuous coefficients”, Sov. Math., Dokl., 6 (1965), 1394–1397 | MR | Zbl

[12] N.V. Zhitarashu, “Schauder estimates and solvability of general boundary problems for general parabolic systems with discontinuous coefficients”, Sov. Math., Dokl., 7 (1966), 952–956 | MR | Zbl

[13] J. Prüss, G. Simonett, Moving interfaces and quasilinear parabolic evolution equations, Monographs in Mathematics, 105, Birkhäuser Publishing, Basel, 2016 | DOI | MR | Zbl

[14] L. Simon, “On contact problems for nonlinear parabolic functional differential equations”, Electron. J. Qual. Theory Differ. Equ., 22 (2003) | MR | Zbl

[15] V.A. Belonogov, S.G. Pyatkov, “On solvability of conjugation problems with non-ideal contact conditions”, Russ. Math., 64:7 (2020), 13–26 | DOI | MR | Zbl

[16] D.A. Nomirovskii, “Generalized solvability of parabolic systems with nonhomogeneous transmission conditions of nonideal contact type”, Differ. Equ., 40:10 (2004), 1467–1477 | DOI | MR | Zbl

[17] B.S. Jovanović, L.G. Vulkov, “Formulation and analysis of a parabolic transmission problem on disjoint intervals”, Publ. Inst. Math., Nouv. Ser., 91 (2012), 111–123 | DOI | MR | Zbl

[18] L.B. Drenchev, J. Sobczak, “Determination of the heat exchange coefficient on the casting-die interface”, High temperature capillarity, reviewed proceedings of the Second International Conference HTC-97 (Cracow, Poland, 29 June - 2 July, 1997) | Zbl

[19] M.N. Ozisik, H.R.B. Orlando, Inverse heat transfer, Taylor Francis, New York, 2000 | MR

[20] A. Abreu, H.R.B. Orlande, C.P. Naveira-Cotta, J.N.N. Quaresma, R.M. Cotta, “Identification of contact failures in multi-layered composites”, Proceedings of the ASME 2011 International Design Engineering Technical Conferences Computers and Information in Engineering Conference IDETC/CIE 2011 (August 28-31), 2011, 1–9 | Zbl

[21] J. Jr. Lugon, A.J.S. Neto, “An inverse problem of parameter estimation in simultaneous heat and mass transfer in a one-dimensional porous medium”, Proceedings of COBEM 2003, 17th International Congress of Mechanical Engineering (November 10-14, 2003), 2003, 1–11

[22] R.I. Hickson, S.I. Barry, G.N. Mercer, “Critical times in multilayer diffusion. I: Exact solutions”, Int. J. Heat Mass Transfer, 52:25-26 (2009), 5776–5783 | DOI | Zbl

[23] C.H. Huang, T.M. Ju, “An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine's exhaust valve and seat”, Int. J. Numer. Methods Engineering, 38:5 (1995), 735–754 | DOI

[24] N.M. AL-Najem, “Whole time domain solution of inverse heat conduction problem in multi-layer media”, Heat and Mass Transfer, 33:3 (1997), 233–240 | DOI

[25] A.M. Osman, J.V. Beckf, “Nonlinear inverse problem for the estimation of time-and-space-dependent heat-transfer coefficients”, J. Thermophysics, 3:2 (2015), 146–152

[26] D.B. Rodriguesa, P.J.S. Pereira, P. Limro-Vieira, P.R. Stauffer, P.F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications”, Int. J. Heat Mass Transf., 62 (2013), 153–162 | DOI

[27] L. Zhuo, D. Lesnik, S. Meng, “Reconstruction of the heat transfer coefficient at the interface of a bi-material”, Inverse Problems in Science and Engineering, 28:3 (2020), 374–401 | DOI | MR | Zbl

[28] M.S. Agranovich, M.I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russ. Math. Surv., 19:3 (1964), 53–161 | DOI | MR | Zbl

[29] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, 18, North-Holland Publishing Company, Amsterdam etc., 1978 | MR | Zbl

[30] R. Denk, M. Hieber, J. Prüss, “Optimal $L_{p}-L_{q}$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl

[31] M.A. Verzhbitskii, S.G. Pyatkov, “On some inverse problems of determining boundary regimes”, Mat. Zamet. SVFU, 23:2 (2016), 3–18 | Zbl

[32] P. Grisvard, “Equations differentielles abstraites”, Ann. Sci. Ec. Norm. Sup., 4:2 (1969), 311–395 | DOI | MR | Zbl

[33] V.A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general form”, Proc. Steklov Inst. Math., 83 (1965), 3–163 | MR | Zbl

[34] H. Triebel, Theory of function spaces, Leipzig, 1983 | MR | Zbl

[35] H. Amann, “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems”, Function spaces, differential operators and nonlinear analysis, Survey articles and communications of the international conference (Friedrichsroda, Germany, September 20-26, 1992), Teubner-Texte Math., 133, eds. H.-J. Schmeisser et al., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1993 | MR | Zbl

[36] G.M. Lieberman, Second order parabolic differential equations, World Scientific, Singapure, 1996 | MR | Zbl

[37] V.A. Kondrat'ev, O.A. Olejnik, “Boundary-value problems for partial differential equations in non-smooth domains”, Russ. Math. Surv., 38:2 (1983), 1–86 | DOI | MR | Zbl