Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a24, author = {V. A. Belonogov and S. G. Pyatkov}, title = {On solvability of some classes of transmission problems in a cylindrical space domain}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {176--206}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/} }
TY - JOUR AU - V. A. Belonogov AU - S. G. Pyatkov TI - On solvability of some classes of transmission problems in a cylindrical space domain JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 176 EP - 206 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/ LA - en ID - SEMR_2021_18_1_a24 ER -
%0 Journal Article %A V. A. Belonogov %A S. G. Pyatkov %T On solvability of some classes of transmission problems in a cylindrical space domain %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 176-206 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/ %G en %F SEMR_2021_18_1_a24
V. A. Belonogov; S. G. Pyatkov. On solvability of some classes of transmission problems in a cylindrical space domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 176-206. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a24/
[1] H.D. Baehr, K. Stephan, Heat and mass transfer, Springer, Berlin, 1998 | Zbl
[2] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, AMS, Providence, 1968 | DOI | MR | Zbl
[3] O.A. Ladyzhenskaya, V. Ya. Rivkind, N.N. Ural'tseva, “Classical solvability of diffraction problems in the case of elliptic and parabolic equations”, Sov. Math., Dokl., 5 (1965), 1249–1252 | Zbl
[4] O.A. Ladyzhenskaya, V. Ya. Rivkind, N.N. Ural'tseva, “The classical solvability of diffraction problems”, Proc. Mat. Inst. Steklova, 92 (1968), 132–166 | MR | Zbl
[5] O.A. Ladyzhenskaya, “On non-stationary operator equations and their applications to linear problems of mathematical physics”, Mat. Sb., N. Ser., 45(87) (1958), 123–158 | MR | Zbl
[6] O.A. Oleinik, “Equations of elliptic and parabolic type with discontinuous coefficients”, UMN, 14:5(89) (1959), 164–166
[7] O.A. Oleinik, “Boundary-value problems for linear elliptic and parabolic equations with discontinuous coefficients”, Transl., Ser. 2, Am. Math. Soc., 42 (1964), 175–194 | Zbl
[8] Z.G. Sheftel', “Solvability in $L_p$ and classical solvability of general boundary-value problems for elliptic equations with discontinuous coefficients”, UMN, 19:4(118) (1964), 230–232 | MR
[9] Z.G. Sheftel', “Estimates in $L_p$ of solutions of elliptic equations with discontinuous coefficients and satisfying general boundary conditions and conjugacy conditions”, Sov. Math., Dokl., 4 (1963), 321–324 | MR | Zbl
[10] M. Schechter, “A generalization of the problem of transmission”, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 14 (1960), 207–236 | MR | Zbl
[11] N.V. Zhitarashu, “Apriori estimates and solvability of general boundary value problems for general elliptic systems with discontinuous coefficients”, Sov. Math., Dokl., 6 (1965), 1394–1397 | MR | Zbl
[12] N.V. Zhitarashu, “Schauder estimates and solvability of general boundary problems for general parabolic systems with discontinuous coefficients”, Sov. Math., Dokl., 7 (1966), 952–956 | MR | Zbl
[13] J. Prüss, G. Simonett, Moving interfaces and quasilinear parabolic evolution equations, Monographs in Mathematics, 105, Birkhäuser Publishing, Basel, 2016 | DOI | MR | Zbl
[14] L. Simon, “On contact problems for nonlinear parabolic functional differential equations”, Electron. J. Qual. Theory Differ. Equ., 22 (2003) | MR | Zbl
[15] V.A. Belonogov, S.G. Pyatkov, “On solvability of conjugation problems with non-ideal contact conditions”, Russ. Math., 64:7 (2020), 13–26 | DOI | MR | Zbl
[16] D.A. Nomirovskii, “Generalized solvability of parabolic systems with nonhomogeneous transmission conditions of nonideal contact type”, Differ. Equ., 40:10 (2004), 1467–1477 | DOI | MR | Zbl
[17] B.S. Jovanović, L.G. Vulkov, “Formulation and analysis of a parabolic transmission problem on disjoint intervals”, Publ. Inst. Math., Nouv. Ser., 91 (2012), 111–123 | DOI | MR | Zbl
[18] L.B. Drenchev, J. Sobczak, “Determination of the heat exchange coefficient on the casting-die interface”, High temperature capillarity, reviewed proceedings of the Second International Conference HTC-97 (Cracow, Poland, 29 June - 2 July, 1997) | Zbl
[19] M.N. Ozisik, H.R.B. Orlando, Inverse heat transfer, Taylor Francis, New York, 2000 | MR
[20] A. Abreu, H.R.B. Orlande, C.P. Naveira-Cotta, J.N.N. Quaresma, R.M. Cotta, “Identification of contact failures in multi-layered composites”, Proceedings of the ASME 2011 International Design Engineering Technical Conferences Computers and Information in Engineering Conference IDETC/CIE 2011 (August 28-31), 2011, 1–9 | Zbl
[21] J. Jr. Lugon, A.J.S. Neto, “An inverse problem of parameter estimation in simultaneous heat and mass transfer in a one-dimensional porous medium”, Proceedings of COBEM 2003, 17th International Congress of Mechanical Engineering (November 10-14, 2003), 2003, 1–11
[22] R.I. Hickson, S.I. Barry, G.N. Mercer, “Critical times in multilayer diffusion. I: Exact solutions”, Int. J. Heat Mass Transfer, 52:25-26 (2009), 5776–5783 | DOI | Zbl
[23] C.H. Huang, T.M. Ju, “An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine's exhaust valve and seat”, Int. J. Numer. Methods Engineering, 38:5 (1995), 735–754 | DOI
[24] N.M. AL-Najem, “Whole time domain solution of inverse heat conduction problem in multi-layer media”, Heat and Mass Transfer, 33:3 (1997), 233–240 | DOI
[25] A.M. Osman, J.V. Beckf, “Nonlinear inverse problem for the estimation of time-and-space-dependent heat-transfer coefficients”, J. Thermophysics, 3:2 (2015), 146–152
[26] D.B. Rodriguesa, P.J.S. Pereira, P. Limro-Vieira, P.R. Stauffer, P.F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications”, Int. J. Heat Mass Transf., 62 (2013), 153–162 | DOI
[27] L. Zhuo, D. Lesnik, S. Meng, “Reconstruction of the heat transfer coefficient at the interface of a bi-material”, Inverse Problems in Science and Engineering, 28:3 (2020), 374–401 | DOI | MR | Zbl
[28] M.S. Agranovich, M.I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russ. Math. Surv., 19:3 (1964), 53–161 | DOI | MR | Zbl
[29] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, 18, North-Holland Publishing Company, Amsterdam etc., 1978 | MR | Zbl
[30] R. Denk, M. Hieber, J. Prüss, “Optimal $L_{p}-L_{q}$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl
[31] M.A. Verzhbitskii, S.G. Pyatkov, “On some inverse problems of determining boundary regimes”, Mat. Zamet. SVFU, 23:2 (2016), 3–18 | Zbl
[32] P. Grisvard, “Equations differentielles abstraites”, Ann. Sci. Ec. Norm. Sup., 4:2 (1969), 311–395 | DOI | MR | Zbl
[33] V.A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general form”, Proc. Steklov Inst. Math., 83 (1965), 3–163 | MR | Zbl
[34] H. Triebel, Theory of function spaces, Leipzig, 1983 | MR | Zbl
[35] H. Amann, “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems”, Function spaces, differential operators and nonlinear analysis, Survey articles and communications of the international conference (Friedrichsroda, Germany, September 20-26, 1992), Teubner-Texte Math., 133, eds. H.-J. Schmeisser et al., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1993 | MR | Zbl
[36] G.M. Lieberman, Second order parabolic differential equations, World Scientific, Singapure, 1996 | MR | Zbl
[37] V.A. Kondrat'ev, O.A. Olejnik, “Boundary-value problems for partial differential equations in non-smooth domains”, Russ. Math. Surv., 38:2 (1983), 1–86 | DOI | MR | Zbl