Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 72-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is studied the analogue of Cauchy–Goursat problem for a loaded third-order hyperbolic type differential equation in an infinite three-dimensional domain. The main research method is the Fourier transform of studying the analogous of the Cauchy–Goursat problem. Based on this Fourier transform, the given problem reduces to a flat analogue of the Cauchy–Goursat problem with a spectral parameter with boundary value conditions. The asymptotic behavior of the solution of plane analogues of the Cauchy–Goursat problem for large values of the spectral parameter is studied. Sufficient conditions are obtained, according to which all operations in this paper are legal.
Keywords: loaded third-order hyperbolic type equation, three-dimensional domain
Mots-clés : Cauchy–Goursat problem, Fourier transform.
@article{SEMR_2021_18_1_a23,
     author = {B. I. Islomov and Y. K. Alikulov},
     title = {Analogues of the {Cauchy-Goursat} problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - Y. K. Alikulov
TI  - Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 72
EP  - 85
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/
LA  - en
ID  - SEMR_2021_18_1_a23
ER  - 
%0 Journal Article
%A B. I. Islomov
%A Y. K. Alikulov
%T Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 72-85
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/
%G en
%F SEMR_2021_18_1_a23
B. I. Islomov; Y. K. Alikulov. Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 72-85. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/

[1] A.V. Bitsadze, M.S. Salakhitdinov, “On the theory of equations of mixed-composite type”, Sib. Mat. Zh., 2:1 (1961), 7–19 | Zbl

[2] M.S. Salakhitdinov, Equation of mixed-composite type, Fan, Tashkent, 1974

[3] T.D. Dzhuraev, Boundary value problems for equations of mixed and mixed-composite type, Fan, Tashkent, 1979 | Zbl

[4] A.I. Kozhanov, “A mixed problem for some classes of nonlinear third-order equations”, Math. USSR, Sb., 46:4 (1983), 507–525 | Zbl

[5] T.D. Dzhuraev, M. Mamazhanov, “Correctness of the formulation of boundary-value problems for a class of third-order parabolic-hyperbolic equations”, Differ. Equ., 19:1 (1983), 31–42 | Zbl

[6] S.X. Chen, “Mixed type equations in gas dynamics”, Q. Appl. Math., 68:3 (2010), 487–511 | Zbl

[7] K.B. Sabitov, G. Yu. Udalova, “Boundary value problem for mixed type equation of the third order with periodic conditions”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 29–45 | Zbl

[8] O.S. Zikirov, “On a Dirichlet problem for composite type equation”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz., 8:2 (2016), 19–26 | Zbl

[9] B.I. Islomov, B.Z. Usmonov, “Nonlocal boundary-value problem for third order elliptic-hyperbolic type equation”, Lobachevskii J. Math., 41:1 (2020), 32–38 | Zbl

[10] A.M. Nakhushev, Equations of mathematical biology, Vysshaya shkola, M., 1995 | Zbl

[11] A.M. Nakhushev, Problems with shifts for partial differential equations, Nauka, M., 2006 | Zbl

[12] M.T. Dzhenaliev, M.I. Ramazanov, Loaded equations as perturbations of differential equations, GYLYM, Almata, 2010

[13] A.M. Nakhushev, Loaded equations and their applications, Nauka, M., 2012

[14] M.T. Dzhenaliev, M.I. Ramazanov, “On the boundary value problem for a spectrally loaded heat conduction operator”, Sib. Mat. Zh., 47:3 (2006), 527–547 | Zbl

[15] A.I. Kozhanov, “A nonlinear loaded parabolic equation and a related inverse problem”, Math. Notes, 76:6 (2004), 784–795 | Zbl

[16] A.M. Nakhushev, “A nonlocal problem and the Goursat problem for a loaded equation of hyperbolic type, and their applications to the prediction of ground moisture”, Sov. Math., Dokl., 19 (1978), 1243–1247 | Zbl

[17] A.B. Borodin, “On one estimate for elliptic equations and its application to loaded equations”, Differ. Equ., 13:1 (1977), 17–22 | Zbl

[18] U.I. Baltaeva, “The loaded parabolic-hyperbolic equation and its relation to non-local problems”, Nanosystems physics, chemistry, mathematics, 8:4 (2017), 413–419

[19] A. Kh. Attaev, “The Cauchy problem for the Mc Kendrick-Von Foerster loaded equation”, International Journal of Pure and Applied Mathematics, 113:4 (2017), 47–52

[20] S.Z. Dzhamalov, R.R. Ashurov, “On a nonlocal boundary-value problem for second kind second-order mixed type loaded equation in a rectangle”, Uzbek Math. J., 2018:3 (2018), 63–72

[21] K.B. Sabitov, “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russ. Math., 59:6 (2015), 23–33 | Zbl

[22] K.B. Sabitov, E.P. Melisheva, “The Dirichlet problem for a loaded mixed-type equation in a rectangular domain”, Russ. Math., 57:7 (2013), 53–65 | Zbl

[23] P. Agarwal, U.I. Baltaeva, “Boundary-value problems for the third-order loaded equation with noncharacteristic type-change boundaries”, Math. Methods Appl. Sci., 41:9 (2018), 3307–3315 | Zbl

[24] B. Islomov, U.I. Baltaeva, “Boundary-value problems for a third-order loaded parabolic-hyperbolic equation with variable coefficients”, Electron. J. Differ. Equ., 221 (2015), 1–10 | Zbl

[25] T.K. Yuldashev, “Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation”, Lobachevskii J. Math., 40:12 (2019), 2116–2123 | Zbl

[26] T.K. Yuldashev, “On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument”, Lobachevskii J. Math., 41:1 (2020), 111–123 | Zbl

[27] I.N. Lanin, “Boundary-value problem for one loaded third-order hyperbolic-parabolic equation”, Differ. Equ., 17 (1981), 66–72 | Zbl

[28] B. Islomov, D.M. Kuryazov, “Boundary value problems for a third-order mixed loaded equation of parabolic-hyperbolic type”, Uzb. Math. J., 2000:2 (2000), 29–35 | Zbl

[29] V.A. Eleev, A.V. Dzarakhokhov, “On a nonlocal boundary value problem for a loaded third-order equation”, Vladikavkaz. Math. Zh., 6:3 (2004), 36–46 | Zbl

[30] B. Islomov, U.I. Baltaeva, “Boundary value problems for the classical and mixed integrodifferential equations with Riemann-Liuovil operators”, Int. J. Partial Differ. Equ., 2013, 157947 | Zbl

[31] B.S. Kishin, O. Kh. Abdullaev, “About a problem for loaded parabolic-hyperbolic type equation with fractional derivatives”, Int. J. Differ. Equ., 2016, 9815796 | Zbl

[32] S. Kh. Gekkieva, “The second boundary value problem for the loaded equation with a fractional derivative”, Reports of Adygeyskaya Inter. Acad., 10:2 (2008), 17–19

[33] P. Agarwal, A. Berdyshev, E. Karimov, “Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative”, Result. Math., 71:3-4 (2017), 1235–1257 | Zbl

[34] A.V. Bitsadze, “Mixed type equations in three-dimensional regions”, Sov. Math., Dokl., 3 (1962), 510–512 | Zbl

[35] A.V. Bitsadze, “On one three-dimensional analogue of the Tricomi problem”, Sib. Mat. Zh., 3:5 (1962), 642–644 | Zbl

[36] A.M. Yezhov, S.P. Pulkin, “An estimate for the solution of the Tricomi problem for a class of equation of mixed type”, Sov. Math., Dokl., 11 (1970), 1046–1049 | Zbl

[37] S.M. Ponomarev, “On the theory of boundary value problems for equations of mixed type in three-dimensional domains”, Sov. Math., Dokl., 20 (1979), 617–620 | Zbl

[38] M.S. Salakhitdinov, B. Islomov, “Boundary value problems for an equation of mixed type with two interior lines of degeneracy”, Sov. Math., Dokl., 43:1 (1991), 235–238 | Zbl

[39] A.K. Urinov, K.T. Karimov, “The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 21:4 (2017), 665–683 | Zbl

[40] T.D. Dzhuraev, A. Sopuev, M. Mamazhanov, Boundary value problems for parabolic-hyperbolic equations, Fan, Tashkent, 1986 | Zbl

[41] M.S. Salakhitdinov, B. Islomov, “Boundary value problems for an equation of mixed type with two interior lines of degeneracy”, Sov. Math., Dokl., 43:1 (1991), 235–238 | Zbl

[42] T.K. Yuldashev, B.I. Islomov, E.K. Alikulov, “Boundary-value problems for loaded third-order parabolic-hyperbolic equations in infinite three-dimensional domains”, Lobachevskii J. Math., 41:5 (2020), 926–944 | Zbl

[43] E.K. Alikulov, “Uniqueness of the solution of a three-dimensional analogue of the Gellerstedt problem for a loaded equation of mixed type”, Uzbek Math. J., 2011:2 (2011), 29–39 | MR

[44] L. Ya. Okunev, Higher algebra, Prosveshchenie, M., 1966 | Zbl

[45] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944 | Zbl

[46] S.G. Mikhlin, Lectures on linear integral equations, Fizmatgiz, M., 1959 | Zbl

[47] S. Agmon, L. Nirenberg, M.H. Protter, “A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolik type”, Commun. Pure Appl. Math., 6 (1953), 455–470 | Zbl

[48] M.M. Smirnov, Equations of mixed type, Translations of Mathematical Monographs, 51, AMS, Providence, 1977 | Zbl

[49] S.G. Samko, A.A. Kilbas, O.I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnokogia, Minsk, 1987 | Zbl