Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a23, author = {B. I. Islomov and Y. K. Alikulov}, title = {Analogues of the {Cauchy-Goursat} problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {72--85}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/} }
TY - JOUR AU - B. I. Islomov AU - Y. K. Alikulov TI - Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 72 EP - 85 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/ LA - en ID - SEMR_2021_18_1_a23 ER -
%0 Journal Article %A B. I. Islomov %A Y. K. Alikulov %T Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 72-85 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/ %G en %F SEMR_2021_18_1_a23
B. I. Islomov; Y. K. Alikulov. Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 72-85. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a23/
[1] A.V. Bitsadze, M.S. Salakhitdinov, “On the theory of equations of mixed-composite type”, Sib. Mat. Zh., 2:1 (1961), 7–19 | Zbl
[2] M.S. Salakhitdinov, Equation of mixed-composite type, Fan, Tashkent, 1974
[3] T.D. Dzhuraev, Boundary value problems for equations of mixed and mixed-composite type, Fan, Tashkent, 1979 | Zbl
[4] A.I. Kozhanov, “A mixed problem for some classes of nonlinear third-order equations”, Math. USSR, Sb., 46:4 (1983), 507–525 | Zbl
[5] T.D. Dzhuraev, M. Mamazhanov, “Correctness of the formulation of boundary-value problems for a class of third-order parabolic-hyperbolic equations”, Differ. Equ., 19:1 (1983), 31–42 | Zbl
[6] S.X. Chen, “Mixed type equations in gas dynamics”, Q. Appl. Math., 68:3 (2010), 487–511 | Zbl
[7] K.B. Sabitov, G. Yu. Udalova, “Boundary value problem for mixed type equation of the third order with periodic conditions”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 29–45 | Zbl
[8] O.S. Zikirov, “On a Dirichlet problem for composite type equation”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz., 8:2 (2016), 19–26 | Zbl
[9] B.I. Islomov, B.Z. Usmonov, “Nonlocal boundary-value problem for third order elliptic-hyperbolic type equation”, Lobachevskii J. Math., 41:1 (2020), 32–38 | Zbl
[10] A.M. Nakhushev, Equations of mathematical biology, Vysshaya shkola, M., 1995 | Zbl
[11] A.M. Nakhushev, Problems with shifts for partial differential equations, Nauka, M., 2006 | Zbl
[12] M.T. Dzhenaliev, M.I. Ramazanov, Loaded equations as perturbations of differential equations, GYLYM, Almata, 2010
[13] A.M. Nakhushev, Loaded equations and their applications, Nauka, M., 2012
[14] M.T. Dzhenaliev, M.I. Ramazanov, “On the boundary value problem for a spectrally loaded heat conduction operator”, Sib. Mat. Zh., 47:3 (2006), 527–547 | Zbl
[15] A.I. Kozhanov, “A nonlinear loaded parabolic equation and a related inverse problem”, Math. Notes, 76:6 (2004), 784–795 | Zbl
[16] A.M. Nakhushev, “A nonlocal problem and the Goursat problem for a loaded equation of hyperbolic type, and their applications to the prediction of ground moisture”, Sov. Math., Dokl., 19 (1978), 1243–1247 | Zbl
[17] A.B. Borodin, “On one estimate for elliptic equations and its application to loaded equations”, Differ. Equ., 13:1 (1977), 17–22 | Zbl
[18] U.I. Baltaeva, “The loaded parabolic-hyperbolic equation and its relation to non-local problems”, Nanosystems physics, chemistry, mathematics, 8:4 (2017), 413–419
[19] A. Kh. Attaev, “The Cauchy problem for the Mc Kendrick-Von Foerster loaded equation”, International Journal of Pure and Applied Mathematics, 113:4 (2017), 47–52
[20] S.Z. Dzhamalov, R.R. Ashurov, “On a nonlocal boundary-value problem for second kind second-order mixed type loaded equation in a rectangle”, Uzbek Math. J., 2018:3 (2018), 63–72
[21] K.B. Sabitov, “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russ. Math., 59:6 (2015), 23–33 | Zbl
[22] K.B. Sabitov, E.P. Melisheva, “The Dirichlet problem for a loaded mixed-type equation in a rectangular domain”, Russ. Math., 57:7 (2013), 53–65 | Zbl
[23] P. Agarwal, U.I. Baltaeva, “Boundary-value problems for the third-order loaded equation with noncharacteristic type-change boundaries”, Math. Methods Appl. Sci., 41:9 (2018), 3307–3315 | Zbl
[24] B. Islomov, U.I. Baltaeva, “Boundary-value problems for a third-order loaded parabolic-hyperbolic equation with variable coefficients”, Electron. J. Differ. Equ., 221 (2015), 1–10 | Zbl
[25] T.K. Yuldashev, “Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation”, Lobachevskii J. Math., 40:12 (2019), 2116–2123 | Zbl
[26] T.K. Yuldashev, “On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument”, Lobachevskii J. Math., 41:1 (2020), 111–123 | Zbl
[27] I.N. Lanin, “Boundary-value problem for one loaded third-order hyperbolic-parabolic equation”, Differ. Equ., 17 (1981), 66–72 | Zbl
[28] B. Islomov, D.M. Kuryazov, “Boundary value problems for a third-order mixed loaded equation of parabolic-hyperbolic type”, Uzb. Math. J., 2000:2 (2000), 29–35 | Zbl
[29] V.A. Eleev, A.V. Dzarakhokhov, “On a nonlocal boundary value problem for a loaded third-order equation”, Vladikavkaz. Math. Zh., 6:3 (2004), 36–46 | Zbl
[30] B. Islomov, U.I. Baltaeva, “Boundary value problems for the classical and mixed integrodifferential equations with Riemann-Liuovil operators”, Int. J. Partial Differ. Equ., 2013, 157947 | Zbl
[31] B.S. Kishin, O. Kh. Abdullaev, “About a problem for loaded parabolic-hyperbolic type equation with fractional derivatives”, Int. J. Differ. Equ., 2016, 9815796 | Zbl
[32] S. Kh. Gekkieva, “The second boundary value problem for the loaded equation with a fractional derivative”, Reports of Adygeyskaya Inter. Acad., 10:2 (2008), 17–19
[33] P. Agarwal, A. Berdyshev, E. Karimov, “Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative”, Result. Math., 71:3-4 (2017), 1235–1257 | Zbl
[34] A.V. Bitsadze, “Mixed type equations in three-dimensional regions”, Sov. Math., Dokl., 3 (1962), 510–512 | Zbl
[35] A.V. Bitsadze, “On one three-dimensional analogue of the Tricomi problem”, Sib. Mat. Zh., 3:5 (1962), 642–644 | Zbl
[36] A.M. Yezhov, S.P. Pulkin, “An estimate for the solution of the Tricomi problem for a class of equation of mixed type”, Sov. Math., Dokl., 11 (1970), 1046–1049 | Zbl
[37] S.M. Ponomarev, “On the theory of boundary value problems for equations of mixed type in three-dimensional domains”, Sov. Math., Dokl., 20 (1979), 617–620 | Zbl
[38] M.S. Salakhitdinov, B. Islomov, “Boundary value problems for an equation of mixed type with two interior lines of degeneracy”, Sov. Math., Dokl., 43:1 (1991), 235–238 | Zbl
[39] A.K. Urinov, K.T. Karimov, “The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 21:4 (2017), 665–683 | Zbl
[40] T.D. Dzhuraev, A. Sopuev, M. Mamazhanov, Boundary value problems for parabolic-hyperbolic equations, Fan, Tashkent, 1986 | Zbl
[41] M.S. Salakhitdinov, B. Islomov, “Boundary value problems for an equation of mixed type with two interior lines of degeneracy”, Sov. Math., Dokl., 43:1 (1991), 235–238 | Zbl
[42] T.K. Yuldashev, B.I. Islomov, E.K. Alikulov, “Boundary-value problems for loaded third-order parabolic-hyperbolic equations in infinite three-dimensional domains”, Lobachevskii J. Math., 41:5 (2020), 926–944 | Zbl
[43] E.K. Alikulov, “Uniqueness of the solution of a three-dimensional analogue of the Gellerstedt problem for a loaded equation of mixed type”, Uzbek Math. J., 2011:2 (2011), 29–39 | MR
[44] L. Ya. Okunev, Higher algebra, Prosveshchenie, M., 1966 | Zbl
[45] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944 | Zbl
[46] S.G. Mikhlin, Lectures on linear integral equations, Fizmatgiz, M., 1959 | Zbl
[47] S. Agmon, L. Nirenberg, M.H. Protter, “A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolik type”, Commun. Pure Appl. Math., 6 (1953), 455–470 | Zbl
[48] M.M. Smirnov, Equations of mixed type, Translations of Mathematical Monographs, 51, AMS, Providence, 1977 | Zbl
[49] S.G. Samko, A.A. Kilbas, O.I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnokogia, Minsk, 1987 | Zbl