Effective Wadge hierarchy in computable quasi-Polish spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 121-135
Voir la notice de l'article provenant de la source Math-Net.Ru
We define and study an effective version of the Wadge hierarchy in computable quasi-Polish spaces which include most spaces of interest for computable analysis. Along with hierarchies of sets we study hierarchies of $k$-partitions which are interesting on their own. We show that levels of such hierarchies are preserved by the computable effectively open surjections, that if the effective Hausdorff-Kuratowski theorem holds in the Baire space then it holds in every computable quasi-Polish space, and we extend the effective Hausdorff theorem to $k$-partitions.
Keywords:
computable quasi-Polish space, effective Wadge hierarchy, fine hierarchy, preservation property, effective Hausdorff theorem.
Mots-clés : $k$-partition
Mots-clés : $k$-partition
@article{SEMR_2021_18_1_a2,
author = {V. L. Selivanov},
title = {Effective {Wadge} hierarchy in computable {quasi-Polish} spaces},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {121--135},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a2/}
}
V. L. Selivanov. Effective Wadge hierarchy in computable quasi-Polish spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 121-135. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a2/