Effective Wadge hierarchy in computable quasi-Polish spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 121-135

Voir la notice de l'article provenant de la source Math-Net.Ru

We define and study an effective version of the Wadge hierarchy in computable quasi-Polish spaces which include most spaces of interest for computable analysis. Along with hierarchies of sets we study hierarchies of $k$-partitions which are interesting on their own. We show that levels of such hierarchies are preserved by the computable effectively open surjections, that if the effective Hausdorff-Kuratowski theorem holds in the Baire space then it holds in every computable quasi-Polish space, and we extend the effective Hausdorff theorem to $k$-partitions.
Keywords: computable quasi-Polish space, effective Wadge hierarchy, fine hierarchy, preservation property, effective Hausdorff theorem.
Mots-clés : $k$-partition
@article{SEMR_2021_18_1_a2,
     author = {V. L. Selivanov},
     title = {Effective {Wadge} hierarchy in computable {quasi-Polish} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a2/}
}
TY  - JOUR
AU  - V. L. Selivanov
TI  - Effective Wadge hierarchy in computable quasi-Polish spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 121
EP  - 135
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a2/
LA  - en
ID  - SEMR_2021_18_1_a2
ER  - 
%0 Journal Article
%A V. L. Selivanov
%T Effective Wadge hierarchy in computable quasi-Polish spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 121-135
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a2/
%G en
%F SEMR_2021_18_1_a2
V. L. Selivanov. Effective Wadge hierarchy in computable quasi-Polish spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 121-135. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a2/