Fixed points of cyclic groups acting purely harmonically on a graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 617-621
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a finite connected graph, possibly with loops and multiple edges. An automorphism group of $X$ acts purely harmonically if it acts freely on the set of directed edges of $X$ and has no invertible edges. Define a genus $g$ of the graph $X$ to be the rank of the first homology group. A discrete version of the Wiman theorem states that the order of a cyclic group $\mathbb{Z}_n$ acting purely harmonically on a graph $X$ of genus $g>1$ is bounded from above by $2g+2.$ In the present paper, we investigate how many fixed points has an automorphism generating a «large» cyclic group $\mathbb{Z}_n$ of order $n\ge2g-1.$ We show that in the most cases, the automorphism acts fixed point free, while for groups of order $2g$ and $2g-1$ it can have one or two fixed points.
Keywords:
graph, fixed point, Wiman theorem.
Mots-clés : homological genus, harmonic automorphism
Mots-clés : homological genus, harmonic automorphism
@article{SEMR_2021_18_1_a19,
author = {A. D. Mednykh},
title = {Fixed points of cyclic groups acting purely harmonically on a graph},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {617--621},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/}
}
TY - JOUR AU - A. D. Mednykh TI - Fixed points of cyclic groups acting purely harmonically on a graph JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 617 EP - 621 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/ LA - en ID - SEMR_2021_18_1_a19 ER -
A. D. Mednykh. Fixed points of cyclic groups acting purely harmonically on a graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 617-621. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/