Mots-clés : homological genus, harmonic automorphism
@article{SEMR_2021_18_1_a19,
author = {A. D. Mednykh},
title = {Fixed points of cyclic groups acting purely harmonically on a graph},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {617--621},
year = {2021},
volume = {18},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/}
}
A. D. Mednykh. Fixed points of cyclic groups acting purely harmonically on a graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 617-621. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/
[1] M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Notes, 15 (2009), 2914–2955 | MR | Zbl
[2] S. Corry, “Genus bounds for harmonic group actions on finite graphs”, Inter. Math. Res. Not., 19 (2011), 4515–4533 | MR | Zbl
[3] S. Corry, “Maximal harmonic group actions on finite graphs”, Discrete Math., 338 (2015), 784–792 | DOI | MR | Zbl
[4] G. Gromadzki, A.D. Mednykh, I.A. Mednykh, “On automorphisms of graphs and Riemann surfaces acting with fixed points”, Anal. Math. Phys., 9 (2019), 2021–2031 | DOI | MR | Zbl
[5] A.D. Mednykh, I.A. Mednykh, R. Nedela, “On the Oikawa and Arakawa Theorems for Graphs”, Proc. Steklov Inst. Math., 304:1 (2019), 133–140 | MR
[6] A. Mednykh, I. Mednykh, “On Wiman's theorem for graphs”, Discrete Math., 338 (2015), 1793–1800 | DOI | MR | Zbl
[7] A. Mednykh, I. Mednykh, “Two Moore's theorems for graphs”, Rend. Istit. Mat. Univ. Trieste, 52 (2020), 469–476 | MR | Zbl
[8] M.J. Moore, “Fixed points of automorphisms of a compact Riemann surfaces”, Canad. J. Math., 22 (1970), 922–932 | DOI | MR | Zbl