Fixed points of cyclic groups acting purely harmonically on a graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 617-621.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a finite connected graph, possibly with loops and multiple edges. An automorphism group of $X$ acts purely harmonically if it acts freely on the set of directed edges of $X$ and has no invertible edges. Define a genus $g$ of the graph $X$ to be the rank of the first homology group. A discrete version of the Wiman theorem states that the order of a cyclic group $\mathbb{Z}_n$ acting purely harmonically on a graph $X$ of genus $g>1$ is bounded from above by $2g+2.$ In the present paper, we investigate how many fixed points has an automorphism generating a «large» cyclic group $\mathbb{Z}_n$ of order $n\ge2g-1.$ We show that in the most cases, the automorphism acts fixed point free, while for groups of order $2g$ and $2g-1$ it can have one or two fixed points.
Keywords: graph, fixed point, Wiman theorem.
Mots-clés : homological genus, harmonic automorphism
@article{SEMR_2021_18_1_a19,
     author = {A. D. Mednykh},
     title = {Fixed points of cyclic groups acting purely harmonically on a graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {617--621},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/}
}
TY  - JOUR
AU  - A. D. Mednykh
TI  - Fixed points of cyclic groups acting purely harmonically on a graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 617
EP  - 621
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/
LA  - en
ID  - SEMR_2021_18_1_a19
ER  - 
%0 Journal Article
%A A. D. Mednykh
%T Fixed points of cyclic groups acting purely harmonically on a graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 617-621
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/
%G en
%F SEMR_2021_18_1_a19
A. D. Mednykh. Fixed points of cyclic groups acting purely harmonically on a graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 617-621. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a19/

[1] M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Notes, 15 (2009), 2914–2955 | MR | Zbl

[2] S. Corry, “Genus bounds for harmonic group actions on finite graphs”, Inter. Math. Res. Not., 19 (2011), 4515–4533 | MR | Zbl

[3] S. Corry, “Maximal harmonic group actions on finite graphs”, Discrete Math., 338 (2015), 784–792 | DOI | MR | Zbl

[4] G. Gromadzki, A.D. Mednykh, I.A. Mednykh, “On automorphisms of graphs and Riemann surfaces acting with fixed points”, Anal. Math. Phys., 9 (2019), 2021–2031 | DOI | MR | Zbl

[5] A.D. Mednykh, I.A. Mednykh, R. Nedela, “On the Oikawa and Arakawa Theorems for Graphs”, Proc. Steklov Inst. Math., 304:1 (2019), 133–140 | MR

[6] A. Mednykh, I. Mednykh, “On Wiman's theorem for graphs”, Discrete Math., 338 (2015), 1793–1800 | DOI | MR | Zbl

[7] A. Mednykh, I. Mednykh, “Two Moore's theorems for graphs”, Rend. Istit. Mat. Univ. Trieste, 52 (2020), 469–476 | MR | Zbl

[8] M.J. Moore, “Fixed points of automorphisms of a compact Riemann surfaces”, Canad. J. Math., 22 (1970), 922–932 | DOI | MR | Zbl