Connections between quaternary and Boolean bent functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 561-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boolean bent functions were introduced by Rothaus (1976) as combinatorial objects related to difference sets, and have since enjoyed a great popularity in symmetric cryptography and low correlation sequence design. In this paper connections between classical Boolean bent functions, generalized Boolean bent functions and quaternary bent functions are studied. We also study Gray images of bent functions and notions of generalized nonlinearity for functions that are relevant to generalized linear cryptanalysis.
Keywords: Boolean functions, generalized Boolean functions, quaternary functions, bent functions, semi bent functions, nonlinearity, linear cryptanalysis, Gray map, $\mathbb{Z}_4$-linear codes.
@article{SEMR_2021_18_1_a18,
     author = {N. N. Tokareva and A. S. Shaporenko and P. Sol\'e},
     title = {Connections between quaternary and {Boolean} bent functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {561--578},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/}
}
TY  - JOUR
AU  - N. N. Tokareva
AU  - A. S. Shaporenko
AU  - P. Solé
TI  - Connections between quaternary and Boolean bent functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 561
EP  - 578
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/
LA  - en
ID  - SEMR_2021_18_1_a18
ER  - 
%0 Journal Article
%A N. N. Tokareva
%A A. S. Shaporenko
%A P. Solé
%T Connections between quaternary and Boolean bent functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 561-578
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/
%G en
%F SEMR_2021_18_1_a18
N. N. Tokareva; A. S. Shaporenko; P. Solé. Connections between quaternary and Boolean bent functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 561-578. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/

[1] S.V. Agievich, “Bent rectangles”, Boolean functions in cryptology and information security, Selected papers based on the presentations at the NATO-Russia Advanced Study Institute on Boolean functions in cryptology and information security (Zvenigorod, Russia, September 8–18, 2007), ed. Preneel Bart, IOS Press, Amsterdam, 2008, 3–22, arXiv: 0804.0209 | MR | Zbl

[2] A.S. Ambrosimov, “Properties of bent functions of $q$-valued logic over finite fields”, Discrete Math. Appl., 4:4 (1994), 341–350 | DOI | MR | Zbl

[3] T. Baignères, P. Junod, S. Vaudenay, How far can we go beyond linear cryptanalysis?, Advances in Cryptology — ASIACRYPT 2004, Lecture Notes in Computer Science, 3329, ed. Lee, Pil Joong, 2004, 432–450 | DOI | MR | Zbl

[4] S. Gangopadhyay, E. Pasalic, P. Stănică, “A note on generalized bent criteria for Boolean functions”, IEEE Trans. Inf. Theory, 59:5 (2013), 3233–3236 | DOI | MR | Zbl

[5] S. Gangopadhyay, C. Riera, P. Stănică, “Gowers U2 norm of Boolean functions and their generalizations”, Workshop on Cryptography and Coding (Rennes, France, 2019)

[6] L. Granboulan, É. Levieil, G. Piret, “Pseudorandom permutation families over abelian groups”, Fast Software Encryption — FSE 2006 (Graz, Austria. March 15–17, 2006), Lecture Notes in Computer Science, 4047, ed. Robshaw Matthew, 2006, 57–77 | DOI | Zbl

[7] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, “The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Trans. Inf. Theory, 40:2 (1994), 301–319 | DOI | MR | Zbl

[8] S. Hodz̆ić, W. Meidl, E. Pasalic, “Full characterization of generalized bent functions as (semi)-bent spaces, their dual, and the Gray image”, IEEE Trans. Inf. Theory, 64:7 (2018), 5432–5440 | DOI | MR | Zbl

[9] K. Ireland, M. Rosen, A classical introduction to modern number theory, GTM, 84, Springer, New York etc., 1990 | MR | Zbl

[10] P.V. Kumar, R.A. Scholtz, L.R. Welch, “Generalized bent functions and their properties”, J. Comb. Theory, Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[11] N. Li, X. Tang, T. Helleseth, “New constructions of quadratic bent functions in polynomial form”, IEEE Trans. Inf. Theory, 60:9 (2014), 5760–5767 | DOI | MR | Zbl

[12] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, v. I, II, North-Holland, Amsterdam etc, 1977 | MR | Zbl

[13] T. Martinsen, W. Meidl, P. Stănică, “Generalized bent functions and their Gray images”, Arithmetic of finite fields, WAIFI 2016, Lect. Notes Comput. Sci., 10064, eds. Duquesne Sylvain et al., 2016, 160–173 | DOI | MR | Zbl

[14] T. Martinsen, W. Meidl, S. Mesnager, P. Stănică, “Decomposing generalized bent and hyperbent functions”, IEEE Trans. Inf. Theory, 63:12 (2017), 7804–7812 | DOI | MR | Zbl

[15] M. Matsui, A. Yamagishi, “A new method for known plaintext attack of FEAL cipher”, Advances in cryptology — EUROCRYPT'92 (Balatonfured, Hungary, May 24–28, 1992), Lect. Notes Comput. Sci., 658, ed. Rueppel Rainer A., Springer, Berlin, 1993, 81–91 | DOI | MR | Zbl

[16] M. Matsui, “Linear cryptanalysis method for DES cipher”, Advances in Cryptology — EUROCRYPT'93 (Lofthus, Norway, May 23–27, 1993), Lect. Notes Comput. Sci., 765, ed. Helleseth Tor, Springer, Berlin, 1994, 386–397 | DOI | MR | Zbl

[17] M. Matsui, “The first experimental cryptanalysis of the Data Encryption Standard”, Advances in Cryptology — CRYPTO'94 (Santa Barbara, California, USA, August 21–25, 1994), Lect. Notes Comput. Sci., 839, ed. Desmedt Yvo G., Springer, Berlin, 1994, 1–11 | DOI | MR | Zbl

[18] W. Meidl, “A secondary construction of bent functions, octal gbent functions and their duals”, Math. Comput. Simul., 143 (2018), 57–64 | DOI | MR | Zbl

[19] S. Mesnager, Bent functions: fundamentals and results, Springer Verlag, 2016 | MR | Zbl

[20] M.G. Parker, H. Raddum, $Z_4$-linear cryptanalysis, NESSIE Internal Report, 27/06/2002:NES/DOC/UIB/WP5/018/1

[21] M.G. Parker, Generalised S-Box Nonlinearity, NESSIE Public Document, 11.02.03:NES/DOC/UIB/WP5/020/A

[22] C. Riera, P. Stănică, S. Gangopadhyay, “Generalized bent Boolean functions and strongly regular Cayley graphs”, Discrete Appl. Math., 283 (2020), 367–374 | DOI | MR | Zbl

[23] O. Rothaus, “On bent functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[24] K-U. Schmidt, “Quaternary constant-amplitude codes for multicode CDMA”, IEEE Trans. Inf. Theory, 55:4 (2009), 1824–1832 | DOI | MR | Zbl

[25] D. Singh, M. Bhaintwal, B.K. Singh, “Some results on q-ary bent functions”, Int. J. Comput. Math., 90:9 (2013), 1761–1773 | DOI | MR | Zbl

[26] L. Sok, M. Shi, P. Solé, “Classification and construction of quaternary self-dual bent functions”, Cryptogr. Commun., 10:2 (2018), 277–289 | DOI | MR | Zbl

[27] P. Solé, N. Tokareva, Connections between quaternary and binary bent functions, Cryptology ePrint Archive, Report, 2009/544, , 2009 http://eprint.iacr.org/

[28] P. Solé, N. Tokareva, “On quaternary and binary bent functions”, Prikl. Diskr. Mat., Suppl., 1 (2009), 16–18 | MR | Zbl

[29] P. Stănică, T. Martinsen, S. Gangopadhyay, B.K. Singh, “Bent and generalized bent Boolean functions”, Des. Codes Cryptography, 69:1 (2013), 77–94 | DOI | MR | Zbl

[30] C. Tang, C. Xiang, Y. Qi, K. Feng, “Complete characterization of generalized bent and $2^k$-bent Boolean functions”, IEEE Trans. Inf. Theory, 63:7 (2017), 4668–4674 | DOI | MR | Zbl

[31] N.N. Tokareva, “Generalizations of bent functions. A survey”, Discretn. Anal. Isslid. Oper., 17:1 (2010), 34–64 | MR | Zbl

[32] N. Tokareva, Bent functions: results and applications to cryptography, Acad. Press. Elsevier, Burlington, 2015 | MR | Zbl

[33] Y. Zheng, X.-M. Zhang, “On plateaued functions”, IEEE Trans. Inf. Theory, 47:3 (2001), 1215–1223 | DOI | MR | Zbl