Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a18, author = {N. N. Tokareva and A. S. Shaporenko and P. Sol\'e}, title = {Connections between quaternary and {Boolean} bent functions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {561--578}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/} }
TY - JOUR AU - N. N. Tokareva AU - A. S. Shaporenko AU - P. Solé TI - Connections between quaternary and Boolean bent functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 561 EP - 578 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/ LA - en ID - SEMR_2021_18_1_a18 ER -
%0 Journal Article %A N. N. Tokareva %A A. S. Shaporenko %A P. Solé %T Connections between quaternary and Boolean bent functions %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 561-578 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/ %G en %F SEMR_2021_18_1_a18
N. N. Tokareva; A. S. Shaporenko; P. Solé. Connections between quaternary and Boolean bent functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 561-578. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a18/
[1] S.V. Agievich, “Bent rectangles”, Boolean functions in cryptology and information security, Selected papers based on the presentations at the NATO-Russia Advanced Study Institute on Boolean functions in cryptology and information security (Zvenigorod, Russia, September 8–18, 2007), ed. Preneel Bart, IOS Press, Amsterdam, 2008, 3–22, arXiv: 0804.0209 | MR | Zbl
[2] A.S. Ambrosimov, “Properties of bent functions of $q$-valued logic over finite fields”, Discrete Math. Appl., 4:4 (1994), 341–350 | DOI | MR | Zbl
[3] T. Baignères, P. Junod, S. Vaudenay, How far can we go beyond linear cryptanalysis?, Advances in Cryptology — ASIACRYPT 2004, Lecture Notes in Computer Science, 3329, ed. Lee, Pil Joong, 2004, 432–450 | DOI | MR | Zbl
[4] S. Gangopadhyay, E. Pasalic, P. Stănică, “A note on generalized bent criteria for Boolean functions”, IEEE Trans. Inf. Theory, 59:5 (2013), 3233–3236 | DOI | MR | Zbl
[5] S. Gangopadhyay, C. Riera, P. Stănică, “Gowers U2 norm of Boolean functions and their generalizations”, Workshop on Cryptography and Coding (Rennes, France, 2019)
[6] L. Granboulan, É. Levieil, G. Piret, “Pseudorandom permutation families over abelian groups”, Fast Software Encryption — FSE 2006 (Graz, Austria. March 15–17, 2006), Lecture Notes in Computer Science, 4047, ed. Robshaw Matthew, 2006, 57–77 | DOI | Zbl
[7] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, “The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Trans. Inf. Theory, 40:2 (1994), 301–319 | DOI | MR | Zbl
[8] S. Hodz̆ić, W. Meidl, E. Pasalic, “Full characterization of generalized bent functions as (semi)-bent spaces, their dual, and the Gray image”, IEEE Trans. Inf. Theory, 64:7 (2018), 5432–5440 | DOI | MR | Zbl
[9] K. Ireland, M. Rosen, A classical introduction to modern number theory, GTM, 84, Springer, New York etc., 1990 | MR | Zbl
[10] P.V. Kumar, R.A. Scholtz, L.R. Welch, “Generalized bent functions and their properties”, J. Comb. Theory, Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl
[11] N. Li, X. Tang, T. Helleseth, “New constructions of quadratic bent functions in polynomial form”, IEEE Trans. Inf. Theory, 60:9 (2014), 5760–5767 | DOI | MR | Zbl
[12] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, v. I, II, North-Holland, Amsterdam etc, 1977 | MR | Zbl
[13] T. Martinsen, W. Meidl, P. Stănică, “Generalized bent functions and their Gray images”, Arithmetic of finite fields, WAIFI 2016, Lect. Notes Comput. Sci., 10064, eds. Duquesne Sylvain et al., 2016, 160–173 | DOI | MR | Zbl
[14] T. Martinsen, W. Meidl, S. Mesnager, P. Stănică, “Decomposing generalized bent and hyperbent functions”, IEEE Trans. Inf. Theory, 63:12 (2017), 7804–7812 | DOI | MR | Zbl
[15] M. Matsui, A. Yamagishi, “A new method for known plaintext attack of FEAL cipher”, Advances in cryptology — EUROCRYPT'92 (Balatonfured, Hungary, May 24–28, 1992), Lect. Notes Comput. Sci., 658, ed. Rueppel Rainer A., Springer, Berlin, 1993, 81–91 | DOI | MR | Zbl
[16] M. Matsui, “Linear cryptanalysis method for DES cipher”, Advances in Cryptology — EUROCRYPT'93 (Lofthus, Norway, May 23–27, 1993), Lect. Notes Comput. Sci., 765, ed. Helleseth Tor, Springer, Berlin, 1994, 386–397 | DOI | MR | Zbl
[17] M. Matsui, “The first experimental cryptanalysis of the Data Encryption Standard”, Advances in Cryptology — CRYPTO'94 (Santa Barbara, California, USA, August 21–25, 1994), Lect. Notes Comput. Sci., 839, ed. Desmedt Yvo G., Springer, Berlin, 1994, 1–11 | DOI | MR | Zbl
[18] W. Meidl, “A secondary construction of bent functions, octal gbent functions and their duals”, Math. Comput. Simul., 143 (2018), 57–64 | DOI | MR | Zbl
[19] S. Mesnager, Bent functions: fundamentals and results, Springer Verlag, 2016 | MR | Zbl
[20] M.G. Parker, H. Raddum, $Z_4$-linear cryptanalysis, NESSIE Internal Report, 27/06/2002:NES/DOC/UIB/WP5/018/1
[21] M.G. Parker, Generalised S-Box Nonlinearity, NESSIE Public Document, 11.02.03:NES/DOC/UIB/WP5/020/A
[22] C. Riera, P. Stănică, S. Gangopadhyay, “Generalized bent Boolean functions and strongly regular Cayley graphs”, Discrete Appl. Math., 283 (2020), 367–374 | DOI | MR | Zbl
[23] O. Rothaus, “On bent functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[24] K-U. Schmidt, “Quaternary constant-amplitude codes for multicode CDMA”, IEEE Trans. Inf. Theory, 55:4 (2009), 1824–1832 | DOI | MR | Zbl
[25] D. Singh, M. Bhaintwal, B.K. Singh, “Some results on q-ary bent functions”, Int. J. Comput. Math., 90:9 (2013), 1761–1773 | DOI | MR | Zbl
[26] L. Sok, M. Shi, P. Solé, “Classification and construction of quaternary self-dual bent functions”, Cryptogr. Commun., 10:2 (2018), 277–289 | DOI | MR | Zbl
[27] P. Solé, N. Tokareva, Connections between quaternary and binary bent functions, Cryptology ePrint Archive, Report, 2009/544, , 2009 http://eprint.iacr.org/
[28] P. Solé, N. Tokareva, “On quaternary and binary bent functions”, Prikl. Diskr. Mat., Suppl., 1 (2009), 16–18 | MR | Zbl
[29] P. Stănică, T. Martinsen, S. Gangopadhyay, B.K. Singh, “Bent and generalized bent Boolean functions”, Des. Codes Cryptography, 69:1 (2013), 77–94 | DOI | MR | Zbl
[30] C. Tang, C. Xiang, Y. Qi, K. Feng, “Complete characterization of generalized bent and $2^k$-bent Boolean functions”, IEEE Trans. Inf. Theory, 63:7 (2017), 4668–4674 | DOI | MR | Zbl
[31] N.N. Tokareva, “Generalizations of bent functions. A survey”, Discretn. Anal. Isslid. Oper., 17:1 (2010), 34–64 | MR | Zbl
[32] N. Tokareva, Bent functions: results and applications to cryptography, Acad. Press. Elsevier, Burlington, 2015 | MR | Zbl
[33] Y. Zheng, X.-M. Zhang, “On plateaued functions”, IEEE Trans. Inf. Theory, 47:3 (2001), 1215–1223 | DOI | MR | Zbl