All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 456-463

Voir la notice de l'article provenant de la source Math-Net.Ru

A $3$-path $uvw$ is an $(i,j,k)$-path if $d(u)\le i$, $d(v)\le j$, and $d(w)\le k$, where $d(x)$ is the degree of a vertex $x$. It is well-known that each $3$-polytope has a vertex of degree at most $5$, called minor. A description of $3$-paths in a $3$-polytope is minor or major if the central item of each its triplet is at most 5 or at least $6$, respectively. Back in 1922, Franklin proved that each $3$-polytope with minimum degree 5 has a $(6,5,6)$-path, which description is tight. Recently, Borodin and Ivanova extended Franklin's theorem by producing all the ten tight minor descriptions of $3$-paths in the class $\mathbf{P_4}$ of $3$-polytopes with minimum degree at least $4$. In 2016, Borodin and Ivanova proved that each polytope with minimum degree $5$ has a $(5,6,6)$-path, and there exists no tight description of $3$-paths in this class of $3$-polytopes other than $\{(6,5,6)\}$ and $\{(5,6,6)\}$. The purpose of this paper is to prove that there exist precisely the following four major tight descriptions of $3$-paths in $\mathbf{ P_4}$: $\{(4,9,4),(4,7,5),(5,6,6)\}$, $\{(4,9,4),(5,7,6)\}$, $\{(4,9,5),(5,6,6)\}$, and $\{(5,9,6)\}$.
Keywords: plane graph, $3$-polytope, structural properties, $3$-path, tight description.
@article{SEMR_2021_18_1_a15,
     author = {Ts. Ch.-D. Batueva and O. V. Borodin and A. O. Ivanova and D. V. Nikiforov},
     title = {All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {456--463},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/}
}
TY  - JOUR
AU  - Ts. Ch.-D. Batueva
AU  - O. V. Borodin
AU  - A. O. Ivanova
AU  - D. V. Nikiforov
TI  - All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 456
EP  - 463
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/
LA  - en
ID  - SEMR_2021_18_1_a15
ER  - 
%0 Journal Article
%A Ts. Ch.-D. Batueva
%A O. V. Borodin
%A A. O. Ivanova
%A D. V. Nikiforov
%T All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 456-463
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/
%G en
%F SEMR_2021_18_1_a15
Ts. Ch.-D. Batueva; O. V. Borodin; A. O. Ivanova; D. V. Nikiforov. All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 456-463. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/