Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a15, author = {Ts. Ch.-D. Batueva and O. V. Borodin and A. O. Ivanova and D. V. Nikiforov}, title = {All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {456--463}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/} }
TY - JOUR AU - Ts. Ch.-D. Batueva AU - O. V. Borodin AU - A. O. Ivanova AU - D. V. Nikiforov TI - All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 456 EP - 463 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/ LA - en ID - SEMR_2021_18_1_a15 ER -
%0 Journal Article %A Ts. Ch.-D. Batueva %A O. V. Borodin %A A. O. Ivanova %A D. V. Nikiforov %T All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 456-463 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/ %G en %F SEMR_2021_18_1_a15
Ts. Ch.-D. Batueva; O. V. Borodin; A. O. Ivanova; D. V. Nikiforov. All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 456-463. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/
[1] V.A. Aksenov, O.V. Borodin, A.O. Ivanova, “Weight of $3$-paths in sparse plane graphs”, Electron. J. Comb., 22:3 (2015), #P3.28 | MR | Zbl
[2] K. Ando, S. Iwasaki, A. Kaneko, “Every $3$-connected planar graph has a connected subgraph with small degree sum”, Annual Meeting of Mathematical Society of Japan, 1993 (Japanese)
[3] O.V. Borodin, “Solution of Kotzig-Grünbaum problems on separation of a cycle in planar graphs”, Mat. Zametki, 46:5 (1989), 9–12 | MR | Zbl
[4] O.V. Borodin, “Structural properties of planar maps with the minimal degree $5$”, Math. Nachr., 158 (1992), 109–117 | DOI | MR | Zbl
[5] O.V. Borodin, “Minimal vertex degree sum of a $3$-path in plane maps”, Discuss. Math., Graph Theory, 17:2 (1997), 279–284 | DOI | MR | Zbl
[6] O.V. Borodin, A.O. Ivanova, “Describing tight descriptions of $3$-paths in triangle-free normal plane maps”, Discrete Math., 338:11 (2015), 1947–1952 | DOI | MR | Zbl
[7] O.V. Borodin, A.O. Ivanova, “An analogue of Franklin's theorem”, Discrete Math., 339:10 (2016), 2553–2556 | DOI | MR | Zbl
[8] O.V. Borodin, A.O. Ivanova, “New results about the structure of plane graphs: a survey”, AIP Conference Proceedings, 1907 (2017), 030051 | DOI | MR
[9] O.V. Borodin, A.O. Ivanova, “All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$”, Sib. Électron. Mat. Izv., 16 (2019), 1334–1344 | DOI | MR | Zbl
[10] O.V. Borodin, A.O. Ivanova, “An extension of Franklin's theorem”, Sib. Électron. Math. Izv., 17 (2020), 1516–1521 | DOI | MR | Zbl
[11] O.V. Borodin, A.O. Ivanova, “A tight description of $3$-polytopes by major $3$-paths”, Siberian Math. J. (to appear)
[12] O.V. Borodin, A.O. Ivanova, T.R. Jensen, A.V. Kostochka, M.P. Yancey, “Describing $3$-paths in normal plane maps”, Discrete Math., 313:23 (2013), 2702–2711 | DOI | MR | Zbl
[13] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, “Tight descriptions of $3$-paths in normal plane maps”, J. Graph Theory, 85:1 (2017), 115–132 | DOI | MR | Zbl
[14] P. Franklin, “The four color problem”, Amer. J. Math., 44 (1922), 225–236 | DOI | MR | Zbl
[15] S. Jendrol', “Paths with restricted degrees of their vertices in planar graphs”, Czech. Math. J., 49:3 (1999), 481–490 | DOI | MR | Zbl
[16] S. Jendrol', T. Madaras, “On light subgraphs in plane graphs with minimum degree five”, Discuss. Math., Graph Theory, 16:2 (1996), 207–217 | DOI | MR | Zbl
[17] S. Jendrol', H.-J. Voss, “Light subgraphs of graphs embedded in the plane. A survey”, Discrete Math., 313:4 (2013), 406–421 | DOI | MR | Zbl
[18] S. Jendrol', M. Maceková, “Describing short paths in plane graphs of girth at least $5$”, Discrete Math., 338:2 (2015), 149–158 | DOI | MR | Zbl
[19] T. Madaras, “Note on the weight of paths in plane triangulations of minimum degree $4$ and $5$”, Discuss. Math., Graph Theory, 20:2 (2000), 173–180 | DOI | MR | Zbl
[20] T. Madaras, “Two variations of Franklin's theorem”, Tatra Mt. Math. Publ., 36 (2007), 61–70 | MR | Zbl
[21] B. Mohar, R. Škrekovski, H.-J. Voss, “Light subgraphs in planar graphs of minimum degree $4$ and edge-degree $9$”, J. Graph Theory, 44:4 (2003), 261–295 | DOI | MR | Zbl
[22] P. Wernicke, “Über den kartographischen Vierfarbensatz”, Math. Ann., 58 (1904), 413–426 | DOI | MR | Zbl