All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 456-463
Voir la notice de l'article provenant de la source Math-Net.Ru
A $3$-path $uvw$ is an $(i,j,k)$-path if $d(u)\le i$, $d(v)\le j$,
and $d(w)\le k$, where $d(x)$ is the degree of a vertex $x$. It is
well-known that each $3$-polytope has a vertex of degree at most $5$,
called minor. A description of $3$-paths in a $3$-polytope is minor or
major if the central item of each its triplet is at most 5 or at
least $6$, respectively.
Back in 1922, Franklin proved that each $3$-polytope with minimum
degree 5 has a $(6,5,6)$-path, which description is tight.
Recently, Borodin and Ivanova extended Franklin's theorem by
producing all the ten tight minor descriptions of $3$-paths in the class
$\mathbf{P_4}$ of $3$-polytopes with minimum degree at least $4$.
In 2016, Borodin and Ivanova proved that each polytope with
minimum degree $5$ has a $(5,6,6)$-path, and there exists no tight
description of $3$-paths in this class of $3$-polytopes other than
$\{(6,5,6)\}$ and $\{(5,6,6)\}$.
The purpose of this paper is to prove that there exist precisely
the following four major tight descriptions of $3$-paths in $\mathbf{
P_4}$: $\{(4,9,4),(4,7,5),(5,6,6)\}$, $\{(4,9,4),(5,7,6)\}$,
$\{(4,9,5),(5,6,6)\}$, and $\{(5,9,6)\}$.
Keywords:
plane graph, $3$-polytope, structural properties, $3$-path, tight description.
@article{SEMR_2021_18_1_a15,
author = {Ts. Ch.-D. Batueva and O. V. Borodin and A. O. Ivanova and D. V. Nikiforov},
title = {All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {456--463},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/}
}
TY - JOUR AU - Ts. Ch.-D. Batueva AU - O. V. Borodin AU - A. O. Ivanova AU - D. V. Nikiforov TI - All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 456 EP - 463 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/ LA - en ID - SEMR_2021_18_1_a15 ER -
%0 Journal Article %A Ts. Ch.-D. Batueva %A O. V. Borodin %A A. O. Ivanova %A D. V. Nikiforov %T All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 456-463 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/ %G en %F SEMR_2021_18_1_a15
Ts. Ch.-D. Batueva; O. V. Borodin; A. O. Ivanova; D. V. Nikiforov. All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 456-463. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a15/