Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a14, author = {T. I. Fedoryaeva}, title = {On radius and typical properties of $n$-vertex graphs of given diameter}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {345--357}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a14/} }
TY - JOUR AU - T. I. Fedoryaeva TI - On radius and typical properties of $n$-vertex graphs of given diameter JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 345 EP - 357 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a14/ LA - en ID - SEMR_2021_18_1_a14 ER -
T. I. Fedoryaeva. On radius and typical properties of $n$-vertex graphs of given diameter. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 345-357. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a14/
[1] Yu.D. Burtin, “On extreme metric parameters of a random graph. I: Asymptotic estimates”, Theory Probab. Appl., 19:4 (1975), 710–725 | DOI | MR | Zbl
[2] O.I. Melnikov, R.I. Tyshkevich, V.A. Emelichev, V.I. Sarvanov, Lectures on graph theory, B.I. Wissenschaftsverlag, Mannheim, 1994 | MR | Zbl
[3] T.I. Fedoryaeva, “Operations and isometric embeddings of graphs related to the metric extension property”, Oper. Research and Discrete Anal., 391 (1997), 31–49 | DOI | MR | Zbl
[4] T.I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54 | MR | Zbl
[5] T.I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Électron. Math. Izv., 13 (2016), 375–387 | MR | Zbl
[6] T.I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Ind. Math., 11:2 (2017), 204–214 | DOI | MR | Zbl
[7] Z. Füredi, Y. Kim, The number of graphs of given diameter, 2012, arXiv: 1204.4580v1 [math.CO] | MR
[8] W. Goddard, O.R. Oellerman, “Distance in graphs”, Structural analysis of complexnNetworks, ed. M. Dehmer, Birkhäuser, Basel, 2011, 49–72 | MR | Zbl
[9] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete mathematics, Addison-Wesley, Amsterdam, 1994 | MR | Zbl
[10] F. Harary, Graph theory, Addison-Wesley, Mass. etc, 1969 | MR | Zbl
[11] J.W. Moon, L. Moser, “Almost all (0,1) matrices are primitive”, Stud. Sci. Math. Hung., 1 (1966), 153–156 | MR | Zbl
[12] P.A. Ostrand, “Graphs with specified radius and diameter”, Discrete Math., 4 (1973), 71–75 | DOI | MR | Zbl