On radius and typical properties of $n$-vertex graphs of given diameter
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 345-357
Voir la notice de l'article provenant de la source Math-Net.Ru
A property of graphs from a class under consideration is typical if almost all graphs from this class have the given property. Typical properties of the class of $n$-vertex graphs of a fixed diameter $k$ are studied. A family of embedded classes of typical $n$-vertex graphs of a given diameter $k\geq 3$, which possess a number of established metric properties, is constructed. Based on the typical properties of metric balls contained in the graph, the radius of almost all $n$-vertex graphs from the investigated classes is found. It is proved that for every fixed integer $k\geq 3$ almost all $n$-vertex graphs of diameter $k$ have radius $\lceil\frac{k}{2}\rceil$, while the radius of almost all graphs of diameter $k=1,2$ is equal to the diameter. All found typical properties of $n$-vertex graphs of a fixed diameter $k\geq 2$ are also typical for connected graphs of diameter at least $k$, as well as for graphs (not necessarily connected) containing the shortest path of length at least $k$.
Keywords:
graph, diameter, diametral vertices, radius, metric ball and sphere, typical graphs, almost all graphs.
@article{SEMR_2021_18_1_a14,
author = {T. I. Fedoryaeva},
title = {On radius and typical properties of $n$-vertex graphs of given diameter},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {345--357},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a14/}
}
TY - JOUR AU - T. I. Fedoryaeva TI - On radius and typical properties of $n$-vertex graphs of given diameter JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 345 EP - 357 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a14/ LA - en ID - SEMR_2021_18_1_a14 ER -
T. I. Fedoryaeva. On radius and typical properties of $n$-vertex graphs of given diameter. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 345-357. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a14/