Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a13, author = {A. A. Makhnev and I. N. Belousov and D. V. Paduchikh}, title = {Inverse problems of graph theory: graphs without triangles}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {27--42}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/} }
TY - JOUR AU - A. A. Makhnev AU - I. N. Belousov AU - D. V. Paduchikh TI - Inverse problems of graph theory: graphs without triangles JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 27 EP - 42 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/ LA - ru ID - SEMR_2021_18_1_a13 ER -
%0 Journal Article %A A. A. Makhnev %A I. N. Belousov %A D. V. Paduchikh %T Inverse problems of graph theory: graphs without triangles %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 27-42 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/ %G ru %F SEMR_2021_18_1_a13
A. A. Makhnev; I. N. Belousov; D. V. Paduchikh. Inverse problems of graph theory: graphs without triangles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | Zbl
[2] A.A. Makhnev, D.V. Paduchikh, “Inverse problems in the theory of distance-regular graphs”, Proc. Steklov Inst. Math. Suppl. 1, 307 (2019), S88–S98 | Zbl
[3] A.A. Makhnev, M.S. Nirova, “On distance-regular Shilla graphs”, Math. Notes, 103:5 (2018), 780–792 | Zbl
[4] P. Cameron, J.H. van Lint, Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambr. Univ. Press, Cambridge etc., 1991 | Zbl
[5] A. Neumaer, “Strongly regular graphs with smallest eigenvalue $-m$”, Arch. Math., 33 (1979), 392–400 | Zbl
[6] A.J. Hoffman, R.R. Singleton, “On Moore graphs with diameters 2 and 3”, IBM J. Res. Dev., 4 (1960), 497–504 | Zbl
[7] M.S. Nirova, “On distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Electron. Math. Izv., 15 (2018), 175–185 | Zbl
[8] A.A. Makhnev, M.M. Isakova, M.S. Nirova, “Distance-regular graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Sib. Electron. Math. Izv., 16 (2019), 1254–1259 | Zbl
[9] S. Bang, J. Koolen, “Distance-regular graphs of diameter $3$ having eigenvalue $-1$”, Linear Algebra Appl., 531 (2017), 38–53 | Zbl
[10] A.E. Brouwer, A table of parameters of strongly regular graphs, https://www.win.tue.nl/ãeb/graphs/srg/srgtab.html