Inverse problems of graph theory: graphs without triangles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 27-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Graph $\Gamma_i$ for a distance-regular graph $\Gamma$ of diameter 3 can be strongly regular for $i=2$ or $i=3$. Finding intersection array of graph $\Gamma$ by the parameters of $\Gamma_i$ is an inverse problem. Earlier direct and inverse problems have been solved by A.A. Makhnev, M.S. Nirova for $i=3$ and by A.A. Makhnev and D.V. Paduchikh for $i=2$. In this work it is consider the case when graph $\Gamma_3$ is strongly regular without triangles and $v\le 100000$.
Keywords: distance regular graph, strongly regular graph without triangles.
@article{SEMR_2021_18_1_a13,
     author = {A. A. Makhnev and I. N. Belousov and D. V. Paduchikh},
     title = {Inverse problems of graph theory: graphs without triangles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - I. N. Belousov
AU  - D. V. Paduchikh
TI  - Inverse problems of graph theory: graphs without triangles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 27
EP  - 42
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/
LA  - ru
ID  - SEMR_2021_18_1_a13
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A I. N. Belousov
%A D. V. Paduchikh
%T Inverse problems of graph theory: graphs without triangles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 27-42
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/
%G ru
%F SEMR_2021_18_1_a13
A. A. Makhnev; I. N. Belousov; D. V. Paduchikh. Inverse problems of graph theory: graphs without triangles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/