Inverse problems of graph theory: graphs without triangles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 27-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Graph $\Gamma_i$ for a distance-regular graph $\Gamma$ of diameter 3 can be strongly regular for $i=2$ or $i=3$. Finding intersection array of graph $\Gamma$ by the parameters of $\Gamma_i$ is an inverse problem. Earlier direct and inverse problems have been solved by A.A. Makhnev, M.S. Nirova for $i=3$ and by A.A. Makhnev and D.V. Paduchikh for $i=2$. In this work it is consider the case when graph $\Gamma_3$ is strongly regular without triangles and $v\le 100000$.
Keywords: distance regular graph, strongly regular graph without triangles.
@article{SEMR_2021_18_1_a13,
     author = {A. A. Makhnev and I. N. Belousov and D. V. Paduchikh},
     title = {Inverse problems of graph theory: graphs without triangles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - I. N. Belousov
AU  - D. V. Paduchikh
TI  - Inverse problems of graph theory: graphs without triangles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 27
EP  - 42
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/
LA  - ru
ID  - SEMR_2021_18_1_a13
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A I. N. Belousov
%A D. V. Paduchikh
%T Inverse problems of graph theory: graphs without triangles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 27-42
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/
%G ru
%F SEMR_2021_18_1_a13
A. A. Makhnev; I. N. Belousov; D. V. Paduchikh. Inverse problems of graph theory: graphs without triangles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a13/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | Zbl

[2] A.A. Makhnev, D.V. Paduchikh, “Inverse problems in the theory of distance-regular graphs”, Proc. Steklov Inst. Math. Suppl. 1, 307 (2019), S88–S98 | Zbl

[3] A.A. Makhnev, M.S. Nirova, “On distance-regular Shilla graphs”, Math. Notes, 103:5 (2018), 780–792 | Zbl

[4] P. Cameron, J.H. van Lint, Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambr. Univ. Press, Cambridge etc., 1991 | Zbl

[5] A. Neumaer, “Strongly regular graphs with smallest eigenvalue $-m$”, Arch. Math., 33 (1979), 392–400 | Zbl

[6] A.J. Hoffman, R.R. Singleton, “On Moore graphs with diameters 2 and 3”, IBM J. Res. Dev., 4 (1960), 497–504 | Zbl

[7] M.S. Nirova, “On distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Electron. Math. Izv., 15 (2018), 175–185 | Zbl

[8] A.A. Makhnev, M.M. Isakova, M.S. Nirova, “Distance-regular graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Sib. Electron. Math. Izv., 16 (2019), 1254–1259 | Zbl

[9] S. Bang, J. Koolen, “Distance-regular graphs of diameter $3$ having eigenvalue $-1$”, Linear Algebra Appl., 531 (2017), 38–53 | Zbl

[10] A.E. Brouwer, A table of parameters of strongly regular graphs, https://www.win.tue.nl/ãeb/graphs/srg/srgtab.html