Three-dimensional homogeneous spaces of nonsolvable Lie groups with equiaffine connections of nonzero curvature
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of establishing links between the curvature and the structure of a manifold is one of the important problems in geometry. The purpose of the work is a local description of the equiaffine (locally equiaffine) connections on three-dimensional homogeneous spaces that only admit invariant connections of nonzero curvature. We have considered the case of the nonsolvable Lie group of transformations. Basic notions are defined, such as an isotropically-faithful pair, an (invariant) affine connection, curvature and torsion tensors, Ricci tensor, equiaffine (locally equiaffine) connection. In the main part of the work, for three-dimensional homogeneous spaces of nonsolvable Lie groups (that only admit invariant connections of nonzero curvature) equiaffine (locally equiaffine) connections and their Ricci tensors are found and written out in explicit form. A special feature of the methods presented in the work is an application of a purely algebraic approach to a description of manifolds and structures on them. Results obtained in the work can be applied to solving problems in differential geometry, differential equations, topology, as well as in other areas of mathematics and physics. The algorithms for finding connections can be computerized and used to solve similar problems in large dimensions.
Keywords: equiaffine connection, homogeneous space,curvature tensor, Ricci tensor.
Mots-clés : Lie group
@article{SEMR_2021_18_1_a11,
     author = {N. P. Mozhey},
     title = {Three-dimensional homogeneous spaces of nonsolvable {Lie} groups with equiaffine connections of nonzero curvature},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a11/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - Three-dimensional homogeneous spaces of nonsolvable Lie groups with equiaffine connections of nonzero curvature
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 237
EP  - 246
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a11/
LA  - en
ID  - SEMR_2021_18_1_a11
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T Three-dimensional homogeneous spaces of nonsolvable Lie groups with equiaffine connections of nonzero curvature
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 237-246
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a11/
%G en
%F SEMR_2021_18_1_a11
N. P. Mozhey. Three-dimensional homogeneous spaces of nonsolvable Lie groups with equiaffine connections of nonzero curvature. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 237-246. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a11/

[1] F. Klein, “A comparative review of recent researches in geometry”, Bull. Amer. Math. Soc. II, 10 (1893), 215–249 | DOI | MR | Zbl

[2] D.V. Alekseyevskiy, A.M. Vinogradov, V.V. Lychagin, “Basic ideas and notions from differential geometry”, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, 28, VINITI AS USSR, M., 1988 | Zbl

[3] K. Nomizu, T. Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, 111, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[4] W. Blaschke, Vorlesungen üeber Differentialgeometrie, Springer, Berlin, 1923 | Zbl

[5] P. Olver, “Recursive moving frames”, Results Math., 60:1-4 (2011), 423–452 | DOI | MR | Zbl

[6] N.P. Mozhey, “Connections of nonzero curvature on homogeneous spaces of nonsolvable transformation groups”, Sib. Électron. Mat. Izv., 15 (2018), 773–785 | MR | Zbl

[7] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, New York etc., 1978 | MR | Zbl

[8] G.D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. Math. (2), 52 (1950), 606–636 | DOI | MR | Zbl

[9] K. Nomizu, “Invariant affine connections on homogeneous spaces”, Am. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl

[10] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, John Wiley and Sons, New York etc, 1963 ; v. II, 1969 | MR | Zbl | Zbl

[11] N.P. Mozhey, Three-dimensional isotropy-faithful homogeneous spaces and connections on them, Izd-vo Kazan. un-ta, Kazan', 2015