Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a10, author = {A. A. Kozhevin}, title = {Feature selection based on statistical estimation of mutual information}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {720--728}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a10/} }
TY - JOUR AU - A. A. Kozhevin TI - Feature selection based on statistical estimation of mutual information JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 720 EP - 728 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a10/ LA - en ID - SEMR_2021_18_1_a10 ER -
A. A. Kozhevin. Feature selection based on statistical estimation of mutual information. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 720-728. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a10/
[1] V. Bolón-Candedo, A. Alonso-Betanzos, Recent advances in ensembles for feature selection, Springer, 2018
[2] A. Bulinski, A. Kozhevin, “Statistical estimation of conditional Shannon entropy”, ESAIM, Probab. Stat., 23 (2019), 350–386 | DOI | MR | Zbl
[3] A. Bulinski, A. Kozhevin, “Statistical Estimation of Mutual Information for Mixed Model”, Methodol. Comput. Appl. Probab., 23:2 (2021), 123–142 | DOI | MR
[4] F. Coelho, A.P. Braga, M.A. Verleysen, “Mutual Information estimator for continuous and discrete variables applied to Feature Selection and Classification problems”, International Journal of Computational Intelligence Systems, 9:4 (2016), 726–733 | DOI
[5] W. Gao, S. Kannan, S. Oh, P. Viswanath, “Estimating mutual information for discrete-continuous mixtures”, 31-st Conference on Neural Information Processing Systems (NIPS 2017) (Long Beach, CA, USA, 2017), 1–12
[6] D.G. Kleinbaum, M. Klein, Logistic regression. A self-learning text, With contributions by Erica Rihl Pryor, 3rd ed., Springer, New York, 2010 | Zbl
[7] M. Kuhn, K. Johnson, Feature engineering and selection: A practical approach for predictive models, CRC Press, Boca Raton, 2020 | MR
[8] S. Kullback, R.A. Leibler, “On information and sufficiency”, Ann. Math. Stat., 22:1 (1951), 79–86 | DOI | MR | Zbl
[9] F. Macedo, R. Oliveira, A. Pacheco, R. Valadas, “Theoretical foundations of forward feature selection methods based on mutual information”, Neurocomputing, 325 (2019), 67–89 | DOI
[10] L. Massaron, A. Boschetti, Regression analysis with Python, Packt Publishing Ltd., Birmingham, 2016
[11] U. Stańczyk, B. Zeilosko, L.C. Jain (eds.), Advances in Feature Selection for Data and Pattern Recognition, Springer, 2018 | MR | Zbl
[12] J.R. Vergara, P.A. Estévez, “A review of feature selection methods based on mutual information”, Neural Comput. and Applic., 24 (2014), 175–186 | DOI