Weak reducibility of computable and generalized computable numberings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 112-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider universal and minimal computable numberings with respect to weak reducibility. A family of total functions that have a universal numbering and two non-weakly equivalent computable numberings is constructed. A sufficient condition for the non-existence of minimal $A$-computable numberings of families with respect to weak reducibility is found for every oracle $A$.
Keywords:
computable numbering, $w$-reducibility, $A$-computable numbering, Rogers semilattice.
@article{SEMR_2021_18_1_a1,
author = {Z. K. Ivanova and M. Kh. Faizrahmanov},
title = {Weak reducibility of computable and generalized computable numberings},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {112--120},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/}
}
TY - JOUR AU - Z. K. Ivanova AU - M. Kh. Faizrahmanov TI - Weak reducibility of computable and generalized computable numberings JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 112 EP - 120 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/ LA - en ID - SEMR_2021_18_1_a1 ER -
%0 Journal Article %A Z. K. Ivanova %A M. Kh. Faizrahmanov %T Weak reducibility of computable and generalized computable numberings %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 112-120 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/ %G en %F SEMR_2021_18_1_a1
Z. K. Ivanova; M. Kh. Faizrahmanov. Weak reducibility of computable and generalized computable numberings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 112-120. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/