Weak reducibility of computable and generalized computable numberings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 112-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider universal and minimal computable numberings with respect to weak reducibility. A family of total functions that have a universal numbering and two non-weakly equivalent computable numberings is constructed. A sufficient condition for the non-existence of minimal $A$-computable numberings of families with respect to weak reducibility is found for every oracle $A$.
Keywords: computable numbering, $w$-reducibility, $A$-computable numbering, Rogers semilattice.
@article{SEMR_2021_18_1_a1,
     author = {Z. K. Ivanova and M. Kh. Faizrahmanov},
     title = {Weak reducibility of computable and generalized computable numberings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {112--120},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/}
}
TY  - JOUR
AU  - Z. K. Ivanova
AU  - M. Kh. Faizrahmanov
TI  - Weak reducibility of computable and generalized computable numberings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 112
EP  - 120
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/
LA  - en
ID  - SEMR_2021_18_1_a1
ER  - 
%0 Journal Article
%A Z. K. Ivanova
%A M. Kh. Faizrahmanov
%T Weak reducibility of computable and generalized computable numberings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 112-120
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/
%G en
%F SEMR_2021_18_1_a1
Z. K. Ivanova; M. Kh. Faizrahmanov. Weak reducibility of computable and generalized computable numberings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 112-120. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a1/