Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1488-1515

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey on the study of the maximum number of limit cycles of planar continuous and discontinuous piecewise differential systems formed by two linear centers and defined in two pieces separated by \begin{eqnarray*} \Sigma =\left\{ (x,y)\in \mathbb{R} ^{2}:x=ly,l\in \mathbb{R} \text{ and }y\geq 0\right\} \\ \cup\left\{ (x,y)\in \mathbb{R} ^{2}:y=0\text{ and }x\geq 0\right\} . \end{eqnarray*} We restrict our attention to the crossing limit cycles, i.e. to the limit cycles having exactly two or four points on $\Sigma $. We prove that such discontinuous piecewise linear differential systems can have $1$ or $2$ limit cycles. The limit cycles having two intersection points with $\Sigma $ can reach the maximum number $2$. The limit cycles having four intersection points with $\Sigma $ are at most $1$, and if it exists, the systems could simultaneously have $1$ limit cycle intersecting $\Sigma $ in three points.
Keywords: Discontinuous piecewise linear differential systems, linear centers, first integrals
Mots-clés : limit cycles.
@article{SEMR_2020_17_a98,
     author = {A. Berbache},
     title = {Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1488--1515},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/}
}
TY  - JOUR
AU  - A. Berbache
TI  - Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1488
EP  - 1515
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/
LA  - en
ID  - SEMR_2020_17_a98
ER  - 
%0 Journal Article
%A A. Berbache
%T Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1488-1515
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/
%G en
%F SEMR_2020_17_a98
A. Berbache. Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1488-1515. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/