Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1488-1515.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey on the study of the maximum number of limit cycles of planar continuous and discontinuous piecewise differential systems formed by two linear centers and defined in two pieces separated by \begin{eqnarray*} \Sigma =\left\{ (x,y)\in \mathbb{R} ^{2}:x=ly,l\in \mathbb{R} \text{ and }y\geq 0\right\} \\ \cup\left\{ (x,y)\in \mathbb{R} ^{2}:y=0\text{ and }x\geq 0\right\} . \end{eqnarray*} We restrict our attention to the crossing limit cycles, i.e. to the limit cycles having exactly two or four points on $\Sigma $. We prove that such discontinuous piecewise linear differential systems can have $1$ or $2$ limit cycles. The limit cycles having two intersection points with $\Sigma $ can reach the maximum number $2$. The limit cycles having four intersection points with $\Sigma $ are at most $1$, and if it exists, the systems could simultaneously have $1$ limit cycle intersecting $\Sigma $ in three points.
Keywords: Discontinuous piecewise linear differential systems, linear centers, first integrals
Mots-clés : limit cycles.
@article{SEMR_2020_17_a98,
     author = {A. Berbache},
     title = {Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1488--1515},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/}
}
TY  - JOUR
AU  - A. Berbache
TI  - Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1488
EP  - 1515
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/
LA  - en
ID  - SEMR_2020_17_a98
ER  - 
%0 Journal Article
%A A. Berbache
%T Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1488-1515
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/
%G en
%F SEMR_2020_17_a98
A. Berbache. Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1488-1515. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/

[1] A. Andronov, A. Vitt, S. Khaikin, Theory of oscillations, Pergamon Press, Oxford, 1966 | MR | Zbl

[2] M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems. Theory and Applications, Appl. Math. Sci., 163, Springer-Verlag, New York, 2008 | MR | Zbl

[3] E. Freire, E. Ponce, F. Torres, “Canonical discontinuous planar piecewise linear systems”, SIAM J. Appl. Dyn. Syst., 11:1 (2012), 181–211 | DOI | MR | Zbl

[4] A.F. Filippov, Differential equations with discontinuous right-hand sides, Kluwer Academic Publishers, Dordrecht etc., 1988 | MR | Zbl

[5] M. Han, W. Zhang, “On Hopf bifurcation in non-smooth planar systems”, J. Differ. Equations, 248:9 (2010), 2399–2416 | DOI | MR | Zbl

[6] S.-M. Huan, X.-S. Yang, “On the number of limit cycles in general planar piecewise linear systems”, Discrete Contin. Dyn. Syst., 32:6 (2012), 2147–2164 | DOI | MR | Zbl

[7] J. Llibre, D.D. Noves, M.A. Teixeira, “Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differentiable center with two zones”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 25:11 (2015), 1550144 | DOI | MR | Zbl

[8] J. Llibre, D.D. Noves, M.A. Teixeira, “Maximum number of limit cycles for certain piecewise linear dynamical systems”, Nonlinear Dyn., 82:3 (2015), 1159–1175 | DOI | MR | Zbl

[9] J. Llibre, E. Ponce, “Three nested limit cycles in discontinuous piecewise linear differential systems with two zones”, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19:3 (2012), 325–335 | MR | Zbl

[10] J. Llibre, M.A. Teixeira, “Piecewise linear differential systems with only centers can create limit cycles?”, Nonlinear Dyn., 91:1 (2018), 249–255 | DOI | MR | Zbl

[11] O. Makarenkov, J.S.W. Lamb (eds.), Phys. D, 241:22, Special issue: Dynamics and bifurcations of nonsmooth systems (2012), 1825–2082 | DOI | MR | Zbl

[12] D.D. Novaes, “Number of limit cycles for some non-generic classes of piecewise linear differential systems”, Extended Abstracts Spring 2016: Nonsmooth Dynamics, Trends in Mathematics, 8, Birkhauser/Springer, Cham, 2017, 135–139 | DOI | MR

[13] D.D. Novaes, E. Poince, “A simple solution to the Braga-Mello conjecture”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 25:1 (2015), 1550009 | DOI | MR | Zbl

[14] D. Pi, X. Zhang, “The sliding bifurcations in planar piecewise smooth differential systems”, J. Dyn. Differ. Equations, 25:4 (2013), 1001–1026 | DOI | MR | Zbl

[15] I.R. Shafarevich, Basic Algebraic Geometry, Springer, Berlin etc, 1974 | MR | Zbl

[16] D.J.W. Simpson, Bifurcations in piecewise-smooth continuous systems, World Sci. Ser. Nonlinear Sci. Ser. A, 69, World Scientific, Hackensack, 2010 | MR | Zbl