Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a98, author = {A. Berbache}, title = {Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1488--1515}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/} }
TY - JOUR AU - A. Berbache TI - Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1488 EP - 1515 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/ LA - en ID - SEMR_2020_17_a98 ER -
%0 Journal Article %A A. Berbache %T Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1488-1515 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/ %G en %F SEMR_2020_17_a98
A. Berbache. Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1488-1515. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a98/
[1] A. Andronov, A. Vitt, S. Khaikin, Theory of oscillations, Pergamon Press, Oxford, 1966 | MR | Zbl
[2] M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems. Theory and Applications, Appl. Math. Sci., 163, Springer-Verlag, New York, 2008 | MR | Zbl
[3] E. Freire, E. Ponce, F. Torres, “Canonical discontinuous planar piecewise linear systems”, SIAM J. Appl. Dyn. Syst., 11:1 (2012), 181–211 | DOI | MR | Zbl
[4] A.F. Filippov, Differential equations with discontinuous right-hand sides, Kluwer Academic Publishers, Dordrecht etc., 1988 | MR | Zbl
[5] M. Han, W. Zhang, “On Hopf bifurcation in non-smooth planar systems”, J. Differ. Equations, 248:9 (2010), 2399–2416 | DOI | MR | Zbl
[6] S.-M. Huan, X.-S. Yang, “On the number of limit cycles in general planar piecewise linear systems”, Discrete Contin. Dyn. Syst., 32:6 (2012), 2147–2164 | DOI | MR | Zbl
[7] J. Llibre, D.D. Noves, M.A. Teixeira, “Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differentiable center with two zones”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 25:11 (2015), 1550144 | DOI | MR | Zbl
[8] J. Llibre, D.D. Noves, M.A. Teixeira, “Maximum number of limit cycles for certain piecewise linear dynamical systems”, Nonlinear Dyn., 82:3 (2015), 1159–1175 | DOI | MR | Zbl
[9] J. Llibre, E. Ponce, “Three nested limit cycles in discontinuous piecewise linear differential systems with two zones”, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19:3 (2012), 325–335 | MR | Zbl
[10] J. Llibre, M.A. Teixeira, “Piecewise linear differential systems with only centers can create limit cycles?”, Nonlinear Dyn., 91:1 (2018), 249–255 | DOI | MR | Zbl
[11] O. Makarenkov, J.S.W. Lamb (eds.), Phys. D, 241:22, Special issue: Dynamics and bifurcations of nonsmooth systems (2012), 1825–2082 | DOI | MR | Zbl
[12] D.D. Novaes, “Number of limit cycles for some non-generic classes of piecewise linear differential systems”, Extended Abstracts Spring 2016: Nonsmooth Dynamics, Trends in Mathematics, 8, Birkhauser/Springer, Cham, 2017, 135–139 | DOI | MR
[13] D.D. Novaes, E. Poince, “A simple solution to the Braga-Mello conjecture”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 25:1 (2015), 1550009 | DOI | MR | Zbl
[14] D. Pi, X. Zhang, “The sliding bifurcations in planar piecewise smooth differential systems”, J. Dyn. Differ. Equations, 25:4 (2013), 1001–1026 | DOI | MR | Zbl
[15] I.R. Shafarevich, Basic Algebraic Geometry, Springer, Berlin etc, 1974 | MR | Zbl
[16] D.J.W. Simpson, Bifurcations in piecewise-smooth continuous systems, World Sci. Ser. Nonlinear Sci. Ser. A, 69, World Scientific, Hackensack, 2010 | MR | Zbl