On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1463-1477

Voir la notice de l'article provenant de la source Math-Net.Ru

The equilibrium problem for a two-dimensional viscoelastic body containing a thin elastic inclusion modeled as a Timoshenko beam is considered. Cases without delamination as well as the case when the inclusion delaminates from the body forming a crack are studied. Both variational and differential statements of the corresponding problems containing nonlinear boundary conditions, as well as their solvability is justified. The limiting case, as the stiffness parameter of the inclusion tends to infinity is considered and the problem of the thin rigid inclusion is obtained.
Keywords: variational inequality, Timoshenko inclusion, viscoelastic body, thin elastic inclusion, crack, non-penetration conditions, nonlinear boundary conditions.
@article{SEMR_2020_17_a97,
     author = {T. S. Popova},
     title = {On equilibrium of a two-dimensional viscoelastic body with a thin {Timoshenko} inclusion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1463--1477},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/}
}
TY  - JOUR
AU  - T. S. Popova
TI  - On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1463
EP  - 1477
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/
LA  - en
ID  - SEMR_2020_17_a97
ER  - 
%0 Journal Article
%A T. S. Popova
%T On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1463-1477
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/
%G en
%F SEMR_2020_17_a97
T. S. Popova. On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1463-1477. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/