Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a97, author = {T. S. Popova}, title = {On equilibrium of a two-dimensional viscoelastic body with a thin {Timoshenko} inclusion}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1463--1477}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/} }
TY - JOUR AU - T. S. Popova TI - On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1463 EP - 1477 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/ LA - en ID - SEMR_2020_17_a97 ER -
T. S. Popova. On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1463-1477. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/
[1] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Methods Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl
[2] A.M. Khludnev, V.V. Shcherbakov, “Singular invariant integrals for elastic bodies with thin elastic inclusions and cracks”, Dokl. Phys., 61:12 (2016), 615–619 | DOI | MR
[3] A.M. Khludnev, “Thin inclusions in elastic bodies crossing an external boundary”, ZAMM, Z. Angew. Math. Mech., 95:11 (2015), 1256–1267 | DOI | MR | Zbl
[4] A.M. Khludnev, G.R. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Systems, 2:1 (2014), 1–21 | DOI | MR | Zbl
[5] A.M. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl
[6] A.M. Khludnev, T.S. Popova, “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mechanica Solida Sinica, 30:3 (2017), 327–333 | DOI | MR
[7] A.M. Khludnev, L. Faella, T.S. Popova, “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 22:4 (2017), 737–750 | DOI | MR | Zbl
[8] V.V. Shcherbakov, “The Griffith formula and $J$-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR
[9] E.M. Rudoy, N.P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26 | DOI | MR | Zbl
[10] N.A. Kazarinov, E.M. Rudoy, V.Y. Slesarenko et al., “Mathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion”, Comput. Math. and Math. Phys., 58 (2018), 761–774 | DOI | MR | Zbl
[11] N.A. Nikolaeva, “On equilibrium of elastic bodies with a cracks crossing thin inclusions”, Sib. J. Ind. Math., 22:4 (2019), 68–80 (in Russian) | DOI | MR
[12] N.V. Neustroeva, N.P. Lazarev, “Junction problem for elastic Bernoulli-Euler and Timoshenko Beams”, Sib. Electron. Math. Izv., 13 (2016), 26–37 | MR | Zbl
[13] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, ZAMM, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl
[14] A.M. Khludnev, T.S. Popova, “On junction problem for elastic Timoshenko inclusion and a semirigid inclusion”, Mat. Zametk. SVFU, 25:1 (2018), 73–89 | Zbl
[15] V. Shcherbakov, “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions”, Z. Angew. Math. Phys., 68:1 (2017), 26 | DOI | MR | Zbl
[16] A.M. Khludnev, T.S. Popova, “On the hierarchy of thin inclusions in elastic bodies”, Mat. Zametki SVFU, 23:1 (2016), 87–107 | Zbl
[17] A.M. Khludnev, Elasticity problems in non-smooth domains, Fizmatlit, M., 2010
[18] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[19] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Crack problem within the context of implicitly constituted quasi-linear viscoelasticity”, Math. Models Methods Appl. Sci., 29:2 (2019), 355–372 | DOI | MR | Zbl
[20] T.S. Popova, “The equilibrium problem for a viscoelastic body with a thin rigid inclusion”, Mat. Zamet. SVFU, 21:1 (2014), 47–55 | MR | Zbl
[21] T. Popova, G.A. Rogerson, “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67:4 (2016), 105 | DOI | MR | Zbl
[22] T.S. Popova, “Problems of thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Ind. Math., 12:2 (2018), 313–324 | DOI | MR | Zbl
[23] G. Fichera, Existing theorems in elasticity theory, Mir, M., 1974
[24] Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969 (French) | MR | Zbl | Zbl