On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1463-1477.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equilibrium problem for a two-dimensional viscoelastic body containing a thin elastic inclusion modeled as a Timoshenko beam is considered. Cases without delamination as well as the case when the inclusion delaminates from the body forming a crack are studied. Both variational and differential statements of the corresponding problems containing nonlinear boundary conditions, as well as their solvability is justified. The limiting case, as the stiffness parameter of the inclusion tends to infinity is considered and the problem of the thin rigid inclusion is obtained.
Keywords: variational inequality, Timoshenko inclusion, viscoelastic body, thin elastic inclusion, crack, non-penetration conditions, nonlinear boundary conditions.
@article{SEMR_2020_17_a97,
     author = {T. S. Popova},
     title = {On equilibrium of a two-dimensional viscoelastic body with a thin {Timoshenko} inclusion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1463--1477},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/}
}
TY  - JOUR
AU  - T. S. Popova
TI  - On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1463
EP  - 1477
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/
LA  - en
ID  - SEMR_2020_17_a97
ER  - 
%0 Journal Article
%A T. S. Popova
%T On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1463-1477
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/
%G en
%F SEMR_2020_17_a97
T. S. Popova. On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1463-1477. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a97/

[1] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Methods Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[2] A.M. Khludnev, V.V. Shcherbakov, “Singular invariant integrals for elastic bodies with thin elastic inclusions and cracks”, Dokl. Phys., 61:12 (2016), 615–619 | DOI | MR

[3] A.M. Khludnev, “Thin inclusions in elastic bodies crossing an external boundary”, ZAMM, Z. Angew. Math. Mech., 95:11 (2015), 1256–1267 | DOI | MR | Zbl

[4] A.M. Khludnev, G.R. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Systems, 2:1 (2014), 1–21 | DOI | MR | Zbl

[5] A.M. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl

[6] A.M. Khludnev, T.S. Popova, “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mechanica Solida Sinica, 30:3 (2017), 327–333 | DOI | MR

[7] A.M. Khludnev, L. Faella, T.S. Popova, “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 22:4 (2017), 737–750 | DOI | MR | Zbl

[8] V.V. Shcherbakov, “The Griffith formula and $J$-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[9] E.M. Rudoy, N.P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26 | DOI | MR | Zbl

[10] N.A. Kazarinov, E.M. Rudoy, V.Y. Slesarenko et al., “Mathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion”, Comput. Math. and Math. Phys., 58 (2018), 761–774 | DOI | MR | Zbl

[11] N.A. Nikolaeva, “On equilibrium of elastic bodies with a cracks crossing thin inclusions”, Sib. J. Ind. Math., 22:4 (2019), 68–80 (in Russian) | DOI | MR

[12] N.V. Neustroeva, N.P. Lazarev, “Junction problem for elastic Bernoulli-Euler and Timoshenko Beams”, Sib. Electron. Math. Izv., 13 (2016), 26–37 | MR | Zbl

[13] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, ZAMM, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[14] A.M. Khludnev, T.S. Popova, “On junction problem for elastic Timoshenko inclusion and a semirigid inclusion”, Mat. Zametk. SVFU, 25:1 (2018), 73–89 | Zbl

[15] V. Shcherbakov, “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions”, Z. Angew. Math. Phys., 68:1 (2017), 26 | DOI | MR | Zbl

[16] A.M. Khludnev, T.S. Popova, “On the hierarchy of thin inclusions in elastic bodies”, Mat. Zametki SVFU, 23:1 (2016), 87–107 | Zbl

[17] A.M. Khludnev, Elasticity problems in non-smooth domains, Fizmatlit, M., 2010

[18] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[19] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Crack problem within the context of implicitly constituted quasi-linear viscoelasticity”, Math. Models Methods Appl. Sci., 29:2 (2019), 355–372 | DOI | MR | Zbl

[20] T.S. Popova, “The equilibrium problem for a viscoelastic body with a thin rigid inclusion”, Mat. Zamet. SVFU, 21:1 (2014), 47–55 | MR | Zbl

[21] T. Popova, G.A. Rogerson, “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67:4 (2016), 105 | DOI | MR | Zbl

[22] T.S. Popova, “Problems of thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Ind. Math., 12:2 (2018), 313–324 | DOI | MR | Zbl

[23] G. Fichera, Existing theorems in elasticity theory, Mir, M., 1974

[24] Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969 (French) | MR | Zbl | Zbl