Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1106-1127.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the memory of a medium from a second-order equation of hyperbolic type with a constant principal part and variable coefficients for lower derivatives is considered. The method is based on the reduction of the problem to a non-linear system of Volterra equations of the second kind and uses the fundamental solution constructed by S. L. Sobolev for hyperbolic equation with variable coefficients. The theorem of global uniqueness, stability and the local theorem of existence are proved.
Keywords: inverse problem, hyperbolic integro-differential equation, Volterra integral equation, stability, delta function
Mots-clés : kernel.
@article{SEMR_2020_17_a95,
     author = {D. K. Durdiev and Zh. D. Totieva},
     title = {Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1106--1127},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - Zh. D. Totieva
TI  - Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1106
EP  - 1127
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/
LA  - en
ID  - SEMR_2020_17_a95
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A Zh. D. Totieva
%T Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1106-1127
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/
%G en
%F SEMR_2020_17_a95
D. K. Durdiev; Zh. D. Totieva. Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1106-1127. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/

[1] A. Lorenzi, E. Sinestrari, “An inverse problem in the theory of materials with memory”, Nonlinear Anal. TMA, 12:12 (1988), 1317–1335 | DOI | MR | Zbl

[2] D.K. Durdiev, “An inverse problem for the three-dimensional wave equation in the medium with memory”, Math. anal. and disc. math., NGU, Novosibirsk, 1989, 19–26 | MR | Zbl

[3] D.K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Sib. Mat. J., 35:3 (1994), 512–521 | MR | Zbl

[4] D.K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, J. Math. Phiz. Anal. Geom., 3:4 (2007), 411–423 | MR | Zbl

[5] D.K. Durdiev, Z.D. Totieva, “The problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz Mat. Zh., 17:4 (2015), 18–43 | MR | Zbl

[6] D.K. Durdiev, Zh.Sh. Safarov, “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro–differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 4:29 (2012), 37–47 | DOI | MR | Zbl

[7] A. Lorenzi, V.G. Romanov, “Stability estimates for an inverse problem related to viscoelastic media”, J. Inv. Ill-Posed Probl., 14:1 (2006), 57–82 | DOI | MR | Zbl

[8] V.G. Romanov, “Inverse problems for equation with a memory”, Eurasian Jour. of Math. and Computer Applications, 2:4 (2014), 51–80 | DOI

[9] D.K. Durdiev, Z.D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 | MR | Zbl

[10] D.K. Durdiev, Z.D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Methods Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl

[11] D.K. Durdiev, Z.D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Sib Math J., 58:3 (2017), 427–444 | DOI | MR | Zbl

[12] Z.D. Totieva, D.K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Math. Notes, 103:1 (2018), 118–132 | DOI | MR | Zbl

[13] V.G. Romanov, Integral Geometry and Inverse Problems for Hyperbolic Equations, Springer Verlag, Berlin etc, 1974 | Zbl

[14] M.M. Lavrent'ev, V.G. Romanov, S.P. Shishatsky, Ill-Posed problems of mathematical physics and analysis, Nauka, M., 1980 | MR | Zbl