Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a95, author = {D. K. Durdiev and Zh. D. Totieva}, title = {Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1106--1127}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/} }
TY - JOUR AU - D. K. Durdiev AU - Zh. D. Totieva TI - Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1106 EP - 1127 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/ LA - en ID - SEMR_2020_17_a95 ER -
%0 Journal Article %A D. K. Durdiev %A Zh. D. Totieva %T Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1106-1127 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/ %G en %F SEMR_2020_17_a95
D. K. Durdiev; Zh. D. Totieva. Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1106-1127. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a95/
[1] A. Lorenzi, E. Sinestrari, “An inverse problem in the theory of materials with memory”, Nonlinear Anal. TMA, 12:12 (1988), 1317–1335 | DOI | MR | Zbl
[2] D.K. Durdiev, “An inverse problem for the three-dimensional wave equation in the medium with memory”, Math. anal. and disc. math., NGU, Novosibirsk, 1989, 19–26 | MR | Zbl
[3] D.K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Sib. Mat. J., 35:3 (1994), 512–521 | MR | Zbl
[4] D.K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, J. Math. Phiz. Anal. Geom., 3:4 (2007), 411–423 | MR | Zbl
[5] D.K. Durdiev, Z.D. Totieva, “The problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz Mat. Zh., 17:4 (2015), 18–43 | MR | Zbl
[6] D.K. Durdiev, Zh.Sh. Safarov, “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro–differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 4:29 (2012), 37–47 | DOI | MR | Zbl
[7] A. Lorenzi, V.G. Romanov, “Stability estimates for an inverse problem related to viscoelastic media”, J. Inv. Ill-Posed Probl., 14:1 (2006), 57–82 | DOI | MR | Zbl
[8] V.G. Romanov, “Inverse problems for equation with a memory”, Eurasian Jour. of Math. and Computer Applications, 2:4 (2014), 51–80 | DOI
[9] D.K. Durdiev, Z.D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 | MR | Zbl
[10] D.K. Durdiev, Z.D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Methods Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl
[11] D.K. Durdiev, Z.D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Sib Math J., 58:3 (2017), 427–444 | DOI | MR | Zbl
[12] Z.D. Totieva, D.K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Math. Notes, 103:1 (2018), 118–132 | DOI | MR | Zbl
[13] V.G. Romanov, Integral Geometry and Inverse Problems for Hyperbolic Equations, Springer Verlag, Berlin etc, 1974 | Zbl
[14] M.M. Lavrent'ev, V.G. Romanov, S.P. Shishatsky, Ill-Posed problems of mathematical physics and analysis, Nauka, M., 1980 | MR | Zbl