Crumbled ice on~the~surface of~a~multilayered fluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 777-801.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the small motions and normal oscillations of a system of two ideal fluids with a free surface partially covered with crumbled ice. By crumbled ice we mean the situation in which heavy particles of some substance float on the free surface and these particles do not interact (or the interaction is small enough to be neglected) when the free surface oscillates. We find sufficient conditions for the existence of a strong solution (with respect to the time variable) to the initial boundary value problem describing the evolution of the specified system. We also study the spectrum of normal oscillations, basic properties of the eigenfunctions, and other questions.
Keywords: initial boundary value problem, differential equation in Hilbert space, Cauchy problem, strong solution, spectral problem.
@article{SEMR_2020_17_a93,
     author = {D. O. Tsvetkov},
     title = {Crumbled ice on~the~surface of~a~multilayered fluid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {777--801},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a93/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - Crumbled ice on~the~surface of~a~multilayered fluid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 777
EP  - 801
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a93/
LA  - en
ID  - SEMR_2020_17_a93
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T Crumbled ice on~the~surface of~a~multilayered fluid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 777-801
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a93/
%G en
%F SEMR_2020_17_a93
D. O. Tsvetkov. Crumbled ice on~the~surface of~a~multilayered fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 777-801. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a93/

[1] N.D. Kopachevsky, S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 1, Self-adjoint Problems for an Ideal Fluid, Birkhauser Verlag, Basel, 2001 | MR | Zbl

[2] D.O. Tsvetkov, “Oscillations of stratified liquid partially covered by Crumpling Ice”, Russ. Math., 62:12 (2018), 59–73 | DOI | MR | Zbl

[3] N.D. Kopachevsky, D.O. Tsvetkov, “Oscillations of stratificated fluids”, J. Math. Sci., 164:4 (2010), 574–602 | DOI | MR | Zbl

[4] M.S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russ. Math. Surv., 57:5 (2002), 847–920 | DOI | MR | Zbl

[5] N.D. Kopachevsky, D.O. Tsvetkov, “Small motions of ideal stratified liquid with a free surface totally covered by a crumbled ice”, Ufa Math. J., 10:3 (2018), 43–58 | DOI | MR | Zbl

[6] AMS, Providence, 1972 | MR | Zbl | Zbl

[7] AMS, Providence, 1974 | MR | Zbl | Zbl

[8] Yu.M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators, Naukova Dumka, Kiev, 1965 (in Russian) | MR | Zbl

[9] V.I. Smirnov, Course of higher mathematics, Izdat. Leningrad. Univ., Leningrad, 1969 (in Russian) | MR | Zbl

[10] M.Sh. Birman, M.Z. Solomyak, “Asymptotic properties of the spectrum of differential equations”, J. Sov. Math., 12:3 (1979), 247–283 | DOI | MR | Zbl

[11] N.A. Karazeeva, M.Z. Solomyak, “The asymptotics of the spectrum of the contact problem for second order elliptic equations”, Probl. Mat. Anal., 8 (1981), 36–48 (in Russian) | MR | Zbl