Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a92, author = {K. S. Fayazov and Ya. K. Khudayberganov}, title = {Ill-posed boundary value problem for mixed type system equations with two degenerate lines}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {647--660}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a92/} }
TY - JOUR AU - K. S. Fayazov AU - Ya. K. Khudayberganov TI - Ill-posed boundary value problem for mixed type system equations with two degenerate lines JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 647 EP - 660 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a92/ LA - ru ID - SEMR_2020_17_a92 ER -
%0 Journal Article %A K. S. Fayazov %A Ya. K. Khudayberganov %T Ill-posed boundary value problem for mixed type system equations with two degenerate lines %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 647-660 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a92/ %G ru %F SEMR_2020_17_a92
K. S. Fayazov; Ya. K. Khudayberganov. Ill-posed boundary value problem for mixed type system equations with two degenerate lines. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 647-660. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a92/
[1] A.A. Gimaltdinova, “Dirichlet problem for a mixed type equation with two perpendicular transition lines in a rectangular area”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 19:4 (2015), 634–649 | DOI | Zbl
[2] A.G. Kuzmin, Nonclassical equations of mixed type and their applications to gas dynamics, Izdatel'stvo Leningradskogo Universiteta, L., 1990 | MR | Zbl
[3] A.I. Kozhanov, Composite Type Equations and Inverse Problems, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1999 | MR | Zbl
[4] A.L. Bukhgeim, “Ill-posed problems, number theory and imaging”, Sib. Math. J., 33:3 (1992), 389–402 | DOI | MR | Zbl
[5] A.M. Nakhushev, Equations of mathematical biology, Vyssh. Shkola, M., 1995 | Zbl
[6] V.N. Vragov, “On the theory of boundary value problems for equations of mixed type in the space”, Diff. equations, 13:6 (1977), 1098–1105 | MR | Zbl
[7] F.I. Frankl, Selected Works on Gas Dynamics, Nauka, M., 1973 | MR
[8] H.A. Levine, “Logarithmic convexity, first order differential inequalities and some applications”, Tranc. of AMS, 152 (1970), 299–320 | DOI | MR | Zbl
[9] K.B. Sabitov, “On the theory of the Frankl problem for equations of mixed type”, Izv. Math., 81:1 (2017), 99–136 | DOI | MR | Zbl
[10] K.S. Fayazov, I.O. Khazhiev, “Conditional stability of a boundary value problem for a system abstract differential equations of the second order with operator coefficients”, Uzbek Mathematical Journal, 2017:2 (2017), 145–155 | MR
[11] K.S. Fayazov, I.O. Khazhiev, “An incorrect initial-boundary value problem for a system of equations of parabolic type with a changing time direction”, Computational technologies, RAS, 2017:3 (2017), 103–114 | MR | Zbl
[12] K.S. Fayazov, I.O. Khazhiev, “The conditional correctness of a boundary value problem for a composite fourth order differential equation”, Russ. Math., 59:4 (2015), 54–62 | DOI | MR | Zbl
[13] K.S. Fayazov, Y.K. Khudayberganov, “Ill-posed boundary value problem for a mixed type equation with two degenerate lines”, Uzbek Mathematical Journal, 2018:2 (2018), 32–42 | DOI | MR
[14] K.S. Fayazov, Y.K. Khudayberganov, “Ill-posed boundary-value problem for a system of partial differential equations with two degenerate lines”, Journal of Siberian Federal University, Mathematics and Physics, 12:3 (2019), 392–401 | DOI | MR
[15] John Wiley Sons, New York, 1958 | MR | Zbl
[16] S.G. Krein, Linear Differential Equations in Banach space, Nauka, M., 1967 | MR | Zbl
[17] S.G. Pyatkov, “Solvability of boundary value problems for a second-order equation of mixed type”, Nonclassical partial differential equations, Collect. Sci. Works (Novosibirsk, 1988), 77–90 | MR | Zbl
[18] S.G. Pyatkov, “Properties of Eigen functions of a certain spectral problem and their applications”, Some Applications of Functional Analysis to Equations of Mathematical Physics, Inst. Mat., Novosibirsk, 1986, 65–84 (In Russian) | MR
[19] M.M. Lavrent'ev, L.Y. Saveliev, Theory of operators and ill-posed problems, 2nd ed., Institute of Mathematics, Novosibirsk, 2010 ; VSP, Leiden, 2006 | MR | Zbl
[20] M.M. Lavrent'ev, Conditionally well-posed problems for differential equations, NGU, Novosibirsk, 1973 (In Russian)
[21] N.A. Larkin, V.A. Novikov, N.N. Yanenko, Nonlinear Equations of Variable Type, Nauka, Novosibirsk, 1983 | MR | Zbl