Asymptotic modelling of bonded plates by a soft thin adhesive layer
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 615-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, a composite structure is considered. The structure is made of three homogeneous plates: two linear elastic adherents and a thin adhesive. It is assumed that elastic properties of the adhesive layer depend on its thickness $\varepsilon$ as $\varepsilon$ to the power of $3$. Passage to the limit as $\varepsilon$ goes to zero is justified and a limit model is found in which the influence of the thin adhesive layer is replaced by an interface condition between adherents. As a result, we have analog of the spring type condition in the plate theory. Moreover, a representation formula of the solution in the adhesive layer has been obtained.
Keywords: bonded structure, Kirchhoff-Love's plate, composite material, spring type interface condition, biharmonic equation.
@article{SEMR_2020_17_a91,
     author = {E. M. Rudoy},
     title = {Asymptotic modelling of bonded plates by a soft thin adhesive layer},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {615--625},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a91/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - Asymptotic modelling of bonded plates by a soft thin adhesive layer
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 615
EP  - 625
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a91/
LA  - en
ID  - SEMR_2020_17_a91
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T Asymptotic modelling of bonded plates by a soft thin adhesive layer
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 615-625
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a91/
%G en
%F SEMR_2020_17_a91
E. M. Rudoy. Asymptotic modelling of bonded plates by a soft thin adhesive layer. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 615-625. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a91/

[1] M. Goland, E. Reissner, “The stresses in cemented joints”, J. Appl. Mech., ASME, 11 (1944), A17–A27

[2] A. Klabring, “Derivation of a model of adhesively bonded joints by the asymptotic expansion method”, Int. J. Eng. Sci., 29:4 (1991), 493–512 | DOI | MR | Zbl

[3] H. Brezis, L.A. Caffarelli, A. Friedman, “Reinforcement problem for elliptic equations and variational inequalities”, Ann. Mat. Pura Appl., IV. Ser., 123 (1980), 219–246 | DOI | MR | Zbl

[4] G. Geymonat, F. Krasucki, S. Lenci, “Mathematical analysis of a bonded joint with a soft thin adhesive”, Math. Mech. Solids, 4:2 (1999), 201–225 | DOI | MR | Zbl

[5] Y. Benveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. Mater., 33 (2001), 309–323 | DOI

[6] S. Dumont, F. Lebon, R. Rizzoni, “Imperfect interfaces with graded materials and unilateral conditions: theoretical and numerical study”, Math. Mech. Solids, 23:3 (2018), 445–460 | DOI | MR | Zbl

[7] E. Bonetti, G. Bonfanti, F. Lebon, “Derivation of imperfect interface models coupling damage and temperature”, Comput. Math. Appl., 77 (2009), 2906–2916 | DOI | MR

[8] A.M. Khludnev, “On modeling elastic bodies with defects”, Sib. Electron. Mat. Izv., 15 (2018), 153–166 | MR | Zbl

[9] M. Serpilli, “Asymptotic interface models in magneto-electro-thermoelastic composites”, Meccanica, 52:6 (2017), 1407–1424 | DOI | MR | Zbl

[10] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, International Journal of Solids and Structures, 182–183 (2020), 100–111 | DOI

[11] N.A. Kazarinov, E.M. Rudoy, V. Yu. Slesarenko, V.V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comput. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | MR | Zbl

[12] G. Sweers, “A survey on boundary conditions for the biharmonic”, Complex Var. Elliptic Equ., 54:2 (2009), 79–93 | DOI | MR | Zbl

[13] A. M. Khludnev, J. Sokolowski, Modelling and Control in Solid Mechanics, Birkhauser Verlag, Basel–Boston–Berlin, 1997 | MR | Zbl

[14] M. Serpilli, R. Rizzoni, F. Lebon, S. Dumont, “An asymptotic derivation of a general imperfect interface law for linear multiphysics composites”, International Journal of Solids and Structures, 180–181 (2019), 97–107 | DOI | MR