Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a90, author = {A. A. Gainetdinova and R. K. Gazizov}, title = {Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {604--614}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/} }
TY - JOUR AU - A. A. Gainetdinova AU - R. K. Gazizov TI - Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 604 EP - 614 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/ LA - en ID - SEMR_2020_17_a90 ER -
%0 Journal Article %A A. A. Gainetdinova %A R. K. Gazizov %T Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 604-614 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/ %G en %F SEMR_2020_17_a90
A. A. Gainetdinova; R. K. Gazizov. Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 604-614. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/
[1] S. Lie, Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen, Bearbeitet und herausgegeben von Dr. G. Scheffers, B.G. Teubner, Leipzig, 1967; Reprinted Chelsea Publishing Company, New York | Zbl
[2] N.H. Ibragimov, M.C. Nucci, “Integration of third order ordinary differential equations by Lie's method: equations admitting three-dimensional Lie algebras”, Lie Groups Appl., 1:2 (1994), 49–64 | MR | Zbl
[3] C. Wafo Soh, F.M. Mahomed, “Canonical forms for systems of two second-order ordinary differential equations”, J. Phys. A, Math. Gen., 34:13 (2001), 2883–911 | DOI | MR | Zbl
[4] A.A. Gainetdinova, R.K. Gazizov, “Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras”, Proc. R. Soc.Lond., A, Math. Phys. Eng. Sci., 473:2197 (2017), 20160461 | DOI | MR | Zbl
[5] R.K. Gazizov, A.A. Gainetdinova, “Operator of invariant differentiation and its application for integrating systems of ordinary differential equations”, Ufa Mathematical Journal, 9:4 (2017), 12–21 | DOI | MR
[6] L.V. Ovsyannikov, Group analysis of differential equations, Academic press, New York etc, 1982 | MR | Zbl
[7] A.A. Gainetdinova, “Integration of systems of ordinary differential equations with a small parameter, which admit approximate Lie algebras”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 28:2 (2018), 143–160 | DOI | MR | Zbl
[8] V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, “Approximate groups of transformations”, Differ. Equations, 29:10 (1993), 1487–1504 | MR | Zbl
[9] Yu.Yu. Bagderina, R.K. Gazizov, “Invariant representation and symmetry reduction for differential equations with a small parameter”, Commun. Nonlinear Sci. Numer. Simul., 9:1 (2004), 3–11 | DOI | MR | Zbl
[10] N.M. Gunter, Integration of the first-order partial differential equations, ONTI, L.–M., 1934 (In Russian)
[11] G.M. Mubarakzyanov, “On solvable Lie algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 1 (1963), 114–123 | MR | Zbl
[12] R.O. Popovich, V.M. Boyko, M.O. Nesterenko, M.W. Lutfullin, “Realizations of real low-dimensional Lie algebras”, J. Phys. A, Math. Gen., 36:26 (2003), 7337–7360 | DOI | MR | Zbl
[13] L.P. Eisenhart, Continuous groups of transformations, Dover, NY, 1961 | MR | Zbl
[14] S.V. Khabirov, “A hierarchy of submodels of differential equations”, Sib. Math. J., 54:6 (2013), 1110–1119 | DOI | MR | Zbl
[15] J. Patera, P. Winternitz, “Subalgebras of real three- and four-dimensional Lie algebras”, J. Math. Phys., 18:7 (1977), 1449–1455 | DOI | MR | Zbl