Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 604-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an algorithm for integrating systems of two second-order ordinary differential equations (ODE) with a small parameter that admit approximate Lie algebras with four essential generators. The algorithm is a modification of the method of consecutive order reduction and is based on using operators of invariant differentiation. A special attention is given to the peculiarities of its application in dependence of the structural properties of Lie algebras of approximate symmetries.
Keywords: system of two second-order ordinary differential equations with a small parameter, approximate Lie algebra of generators, operator of invariant differentiation, invariant representation, differential invariant, integration of equations.
@article{SEMR_2020_17_a90,
     author = {A. A. Gainetdinova and R. K. Gazizov},
     title = {Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {604--614},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/}
}
TY  - JOUR
AU  - A. A. Gainetdinova
AU  - R. K. Gazizov
TI  - Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 604
EP  - 614
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/
LA  - en
ID  - SEMR_2020_17_a90
ER  - 
%0 Journal Article
%A A. A. Gainetdinova
%A R. K. Gazizov
%T Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 604-614
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/
%G en
%F SEMR_2020_17_a90
A. A. Gainetdinova; R. K. Gazizov. Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 604-614. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a90/

[1] S. Lie, Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen, Bearbeitet und herausgegeben von Dr. G. Scheffers, B.G. Teubner, Leipzig, 1967; Reprinted Chelsea Publishing Company, New York | Zbl

[2] N.H. Ibragimov, M.C. Nucci, “Integration of third order ordinary differential equations by Lie's method: equations admitting three-dimensional Lie algebras”, Lie Groups Appl., 1:2 (1994), 49–64 | MR | Zbl

[3] C. Wafo Soh, F.M. Mahomed, “Canonical forms for systems of two second-order ordinary differential equations”, J. Phys. A, Math. Gen., 34:13 (2001), 2883–911 | DOI | MR | Zbl

[4] A.A. Gainetdinova, R.K. Gazizov, “Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras”, Proc. R. Soc.Lond., A, Math. Phys. Eng. Sci., 473:2197 (2017), 20160461 | DOI | MR | Zbl

[5] R.K. Gazizov, A.A. Gainetdinova, “Operator of invariant differentiation and its application for integrating systems of ordinary differential equations”, Ufa Mathematical Journal, 9:4 (2017), 12–21 | DOI | MR

[6] L.V. Ovsyannikov, Group analysis of differential equations, Academic press, New York etc, 1982 | MR | Zbl

[7] A.A. Gainetdinova, “Integration of systems of ordinary differential equations with a small parameter, which admit approximate Lie algebras”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 28:2 (2018), 143–160 | DOI | MR | Zbl

[8] V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, “Approximate groups of transformations”, Differ. Equations, 29:10 (1993), 1487–1504 | MR | Zbl

[9] Yu.Yu. Bagderina, R.K. Gazizov, “Invariant representation and symmetry reduction for differential equations with a small parameter”, Commun. Nonlinear Sci. Numer. Simul., 9:1 (2004), 3–11 | DOI | MR | Zbl

[10] N.M. Gunter, Integration of the first-order partial differential equations, ONTI, L.–M., 1934 (In Russian)

[11] G.M. Mubarakzyanov, “On solvable Lie algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 1 (1963), 114–123 | MR | Zbl

[12] R.O. Popovich, V.M. Boyko, M.O. Nesterenko, M.W. Lutfullin, “Realizations of real low-dimensional Lie algebras”, J. Phys. A, Math. Gen., 36:26 (2003), 7337–7360 | DOI | MR | Zbl

[13] L.P. Eisenhart, Continuous groups of transformations, Dover, NY, 1961 | MR | Zbl

[14] S.V. Khabirov, “A hierarchy of submodels of differential equations”, Sib. Math. J., 54:6 (2013), 1110–1119 | DOI | MR | Zbl

[15] J. Patera, P. Winternitz, “Subalgebras of real three- and four-dimensional Lie algebras”, J. Math. Phys., 18:7 (1977), 1449–1455 | DOI | MR | Zbl