A viscoplastic contact problem with friction and adhesion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 540-565.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to present a new result in the study of a contact problem between a viscoplastic body and an obstacle, the so-called foundation. The process is supposed to be quasistatic and the contact is modelled with a version of Coulomb's law of dry friction, normal compliance and an ordinary differential equation which describes the adhesion effect. We derive a variational formulation for the model and under smallness assumption, we establish the existence of a weak solution to the problem. The proof is based on the Rothe time-discretization method, the Banach fixed point theorem and arguments of monotonicity, compactness and lower semicontinuity.
Keywords: viscoplastic materials, adhesion, quasistatic process, Coulomb's law of dry friction, normal compliance, Rothe method, lower semicontinuity, the Banach fixed point theorem, variational inequalities.
@article{SEMR_2020_17_a89,
     author = {Abderrezak Kasri},
     title = {A viscoplastic contact problem with friction and adhesion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {540--565},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a89/}
}
TY  - JOUR
AU  - Abderrezak Kasri
TI  - A viscoplastic contact problem with friction and adhesion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 540
EP  - 565
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a89/
LA  - en
ID  - SEMR_2020_17_a89
ER  - 
%0 Journal Article
%A Abderrezak Kasri
%T A viscoplastic contact problem with friction and adhesion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 540-565
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a89/
%G en
%F SEMR_2020_17_a89
Abderrezak Kasri. A viscoplastic contact problem with friction and adhesion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 540-565. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a89/

[1] A. Amassad, C. Fabre, “Existence for viscoplastic contact with Coulomb friction problems”, Int. J. Math. Math. Sci., 32:7 (2002), 411–437 | DOI | MR | Zbl

[2] M. Barboteu, A. Matei, M. Sofonea, “Analysis of Quasistatic Viscoplastic Contact Problems with Normal Compliance”, Q. J. Mech. Math., 65:4 (2012), 555–579 | DOI | MR | Zbl

[3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, Berlin, 2011 | MR | Zbl

[4] N. Cristescu, I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnica, Bucharest, 1982 | MR | Zbl

[5] O. Chau, D. Goeleven, R. Oujja, “Solvability of a Nonclamped Frictional Contact Problem with Adhesion”, Essays in Mathematics and its Applications, Springer, 2016, 71–87 | MR | Zbl

[6] J. Chen, W. Han, M. Sofonea, “Numerical analysis of a contact problem in rate-type viscoplasticity”, Numer. Funct. Anal. Optimization, 22:5–6 (2001), 505–527 | DOI | MR | Zbl

[7] M. Cocu, R. Rocca, “Existence results for unilateral quasistatic contact problems with friction and adhesion”, Math. Model. Numer. Anal., 34:5 (2000), 981–1001 | DOI | MR | Zbl

[8] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[9] E. Emmrich, Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems, Preprint, No 637-1999, TU Berlin, Fachbereich Mathematik, 1999 | MR

[10] M. Frémond, “Adhérence des solides”, J. Méc. Th éor. Appl., 6 (1987), 383–407 | MR | Zbl

[11] M. Frémond, Non-Smooth Thermomechanics, Springer, Berlin, 2002 | MR | Zbl

[12] L. Gasiński, N.S. Papageorgiou, Nonlinear Analysis, Chapman and Hall/CRC, 2005 | MR | Zbl

[13] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, AMS/IP Studies in Advanced Mathematics, 39, American Mathematical Society International Press, Providence, 2002 | DOI | MR | Zbl

[14] J.A.C. Martins, J.T. Oden, “Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface law”, Nonlinear Anal., TMA, 11:3 (1987), 407–428 | DOI | MR | Zbl

[15] A. Klarbring, A. Mikelic, M. Shillor, “Frictional contact problems with normal compliance”, Int. J. Eng. Sci., 26:8 (1988), 811–832 | DOI | MR | Zbl

[16] A. Kasri and A. Touzaline, “A quasistatic frictional contact problem for viscoelastic materials with long memory”, Georgian Mathematical Journ., 2018 | DOI | MR | Zbl

[17] A. Kasri, A. Touzaline, “Analysis of a dynamic contact problem with friction, damage and adhesion”, Applicationes mathematicae, 46 (2019), 127–153 | DOI | MR | Zbl

[18] A. Kasri, A. Touzaline, “Analysis and numerical approximation of a frictional contact problem with adhesion”, Rev. Roum. Math. Pures Appl., 62:4 (2017), 477–503 | MR | Zbl

[19] J. Nec̃as, I. Hlavac̃ek, Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elsevier, Amsterdam, 1981

[20] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhauser, Boston–Basel–Stuttgart, 1985 | MR | Zbl

[21] E. Roth, “Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben”, Math. Ann., 102 (1930), 650–670 | DOI | MR | Zbl

[22] M. Raous, L. Cangémi, M. Cocu, “A consistent model coupling adhesion, friction and unilateral contact”, Comput. Methods Appl. Eng., 177:3–4 (1999), 383–399 | DOI | MR | Zbl

[23] M. Shillor, M. Sofonea, J.J. Telega, Models and Analysis of Quasistatic Contact, Springer, Berlin, 2004 | Zbl

[24] M. Sofonea, W. Han, M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure Appl. Math., 276, Chapman-Hall/CRC Press, New York, 2006 | MR | Zbl

[25] A. Touzaline, “A quasistatic frictional contact problem with adhesion for nonlinear elastic materials”, Electron. J. Differ. Equ., 131 (2008), 1–17 | MR | Zbl