Estimates for solutions of one class of systems of equations of neutral type with distributed delay
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 416-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a system of linear differential equations of neutral type with periodic coefficients and with distributed delay. Sufficient conditions for the exponential stability of the zero solution of this system are given, estimates for solutions that characterize the exponential decrease at infinity are indicated. In the study of exponential stability, the modified Lyapunov–Krasovskii functional is used. Also for system of delay difference equations, a criterion for the exponential stability of the zero solution in terms of the solvability of the matrix equation with a delayed argument is proved.
Keywords: exponential stability, Lyapunov–Krasovskii functional, distributed delay, periodic coefficient.
Mots-clés : neutral type equation
@article{SEMR_2020_17_a88,
     author = {T. Yskak},
     title = {Estimates for solutions of one class of systems of equations of neutral type with distributed delay},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {416--427},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a88/}
}
TY  - JOUR
AU  - T. Yskak
TI  - Estimates for solutions of one class of systems of equations of neutral type with distributed delay
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 416
EP  - 427
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a88/
LA  - ru
ID  - SEMR_2020_17_a88
ER  - 
%0 Journal Article
%A T. Yskak
%T Estimates for solutions of one class of systems of equations of neutral type with distributed delay
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 416-427
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a88/
%G ru
%F SEMR_2020_17_a88
T. Yskak. Estimates for solutions of one class of systems of equations of neutral type with distributed delay. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 416-427. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a88/

[1] N.N. Krasovskii, Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford University Press, Stanford, 1963 | MR | Zbl

[2] A.D. Myshkis, Linear differential equations with retarded argument, Gostehizdat Publ., M.–L., 1951 | MR | Zbl

[3] L.E. El'sgol'ts, S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York, 1973 | MR | Zbl

[4] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977 | MR | Zbl

[5] D.G. Korenevskiĭ, Stability of Dynamical Systems under Random Perturbations of Parameters. Algebraic Criteria, Naukova Dumka, Kiev, 1989 | MR | Zbl

[6] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Introduction to the Theory of Linear Functional Differential Equations, World Federation Publ. Comp., Atlanta, GA, 1995 | MR | Zbl

[7] Yu.F. Dolgiĭ, Stability of Periodic Differential-Difference Equations, Izd. Ural. Gos. Univ., Ekaterinburg, 1996

[8] V.B. Kolmanovskiĭ, A.D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[9] K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems, Birkhauser, Boston, 2003 | MR | Zbl

[10] R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, Berlin, 2012 | MR | Zbl

[11] M.I. Gil', Stability of Neutral Functional Differential Equations, Atlantis Studies in Differential Equations, 3, Atlantis Press, Amsterdam, 2014 | MR | Zbl

[12] G.V. Demidenko, “Stability of Solutions to Linear Differential Equations of Neutral Type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl

[13] G.V. Demidenko, T.V. Kotova, M.A. Skvortsova, “Stability of Solutions to Differential Equations of Neutral Type”, J. Math. Sci., New York, 186:3 (2012), 394–406 | MR | Zbl

[14] G.V. Demidenko, E.S. Vodop'yanov, M.A. Skvortsova, “Estimates of Solutions to the Linear Differential Equations of Neutral Type with Several Delays of the Argument”, J. Appl. Indust. Math., 7:4 (2013), 472–479 | MR | Zbl

[15] G.V. Demidenko, I.I. Matveeva, “On Estimates of Solutions to Systems of Differential Equations of Neutral Type with Periodic Coefficients”, Sib. Math. J., 55:5 (2014), 866–881 | MR | Zbl

[16] I.I. Matveeva, “On Exponential Stability of Solutions to Periodic Neutral-Type Systems”, Siberian Math. J., 58:2 (2017), 264–270 | MR | Zbl

[17] I.I. Matveeva, “On the Robust Stability of Solutions to Periodic Systems of Neutral Type”, J. Appl. Indust. Math., 12:4 (2018), 684–693 | MR | Zbl

[18] I.I. Matveeva, “On the exponential stability of the solutions of neutral type linear periodic systems with variable delay”, Sib. Elektron. Mat. Izv., 16 (2019), 748–756 | MR | Zbl

[19] T. Yskak, “Stability of Solutions to Systems of Differential Equations with Distributed Delay”, Funct. Differ. Equ., 25:1–2 (2018), 97–108 | MR

[20] T. Yskak, “On the stability of systems of linear differential equations of neutral type with distributed delay”, J. Appl. Ind. Math., 13:3 (2019), 575–583 | MR | Zbl

[21] G.V. Demidenko, “Stability of solutions to difference equations with periodic coefficients in linear terms”, J. Comput. Math. Optim., 6:1 (2010), 1–12 | MR | Zbl