Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a86, author = {A. I. Furtsev}, title = {The unilateral contact problem for a {Timoshenko} plate and a thin elastic obstacle}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {364--379}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a86/} }
TY - JOUR AU - A. I. Furtsev TI - The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 364 EP - 379 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a86/ LA - ru ID - SEMR_2020_17_a86 ER -
A. I. Furtsev. The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 364-379. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a86/
[1] H. Lewy, “On a variational problem with inequalities on the boundary”, J. Math. Mech., 17:9 (1968), 861–884 | MR | Zbl
[2] H. Lewy, “On the coincidence set in variational inequalities”, J. of Differ. Geom., 6 (1972), 497–501 | MR | Zbl
[3] J. Frehse, “On Signorini's problem and variational problems with thin obstacles”, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV, 4 (1977), 343–362 | MR | Zbl
[4] L.A. Caffarelli, “Further regularity for the Signorini problem”, Commun. Partial Differ. Equations, 4:9 (1979), 1067–1075 | MR | Zbl
[5] I. Athanasopoulos, L.A. Caffarelli, “Optimal regularity of lower-dimensional obstacle problems”, J. Math. Sci., 132:3 (2006), 274–284 | MR | Zbl
[6] I. Athanasopoulos, L.A. Caffarelli, S. Salsa, “The structure of the free boundary for lower dimensional obstacle problems”, Am. J. Math., 130:2 (2008), 485–498 | MR | Zbl
[7] A. Petrosyan, H. Shahgholian, N.N. Ural'tseva, Regularity of free boundaries in obstacle-type problems, American Mathematical Society, Providence, 2012 | MR | Zbl
[8] B. Schild, “A regularity result for polyharmonic variational inequalities with thin obstacles”, Ann. Sc. Norm. Super. Pisa, Sci., IV, 11:1 (1984), 87–122 | MR | Zbl
[9] B. Schild, “On the coincidence set in biharmonic variational inequalities with thin obstacles”, Ann. Sc. Norm. Super. Pisa, Sci., IV, 13:4 (1986), 559–616 | MR | Zbl
[10] N.N. Ural'tseva, “Regularity of solutions of variational inequalities”, Russi. Math. Surv., 42:6 (1987), 191–219 | Zbl
[11] N.N. Ural'tseva, “An estimate of the derivatives of the solutions of variational inequalities on the boundary of the domain”, J. Sov. Math., 45:3 (1989), 1181–1191 | Zbl
[12] N. Guillen, “Optimal regularity for the Signorini problem”, Calc. Var. Partial Differ Equ., 36:4 (2009), 533–546 | MR | Zbl
[13] N. Garofalo, M.S.V. Garcia, “New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients”, Adv. Math., 262 (2014), 682–750 | MR | Zbl
[14] H. Koch, A. Rüland, W. Shi, “The variable coefficient thin obstacle problem: Carleman inequalities”, Adv. Math., 301 (2016), 820–866 | MR | Zbl
[15] A.M. Khludnev, K.H. Hoffmann, N.D. Botkin, “The variational contact problem for elastic objects of different dimensions”, Sib. Math. J., 47:3 (2006), 584–593 | MR | Zbl
[16] A.I. Furtsev, “Differentiation of energy functional with respect to delamination's length in problem of contact between plate and beam”, Sib. Electron. Mat. Izv., 15 (2018), 935–949 | MR | Zbl
[17] A. Khludnev, G. Leugering, “Unilateral contact problems for two perpendicular elastic structures”, Z. Anal. Anwend., 27:2 (2008), 157–177 | MR | Zbl
[18] A. Khludnev, A. Tani, “Unilateral contact problem for two inclined elastic bodies”, Eur. J. Mech. A, Solids, 27:3 (2008), 365–377 | MR | Zbl
[19] T.A. Rotanova, “Unilateral contact problem for two plates with a rigid inclusion in the lower plate”, J. Math. Sci., 188:4 (2013), 452–462 | MR | Zbl
[20] N.V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates”, J. Appl. Ind. Math., 4:4 (2010), 526–538 | MR | Zbl
[21] A.I. Furtsev, “On contact between a thin obstacle and a plate containing a thin inclusion”, J. Math. Sci., 237:7 (2019), 530–545 | MR | Zbl
[22] A.I. Furtsev, “A contact problem for a plate and a beam in the presence of adhesion”, J. Appl. Ind. Math., 13:2 (2019), 208–218 | MR | Zbl