The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 364-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of contact between a plate and a beam acting as an obstacle to the plate. The plate is described in the framework of Timoshenko theory of plates. It is assumed that no mutual penetration between the plate and the obstacle can occur, and so an appropriate non-penetration condition is used. We study the existence and uniqueness of a solution for the equilibrium problem as well as passages to the limit with respect to the shear rigidity parameter. The accompanying optimal control problem is investigated in which the rigidity parameter acts as a control parameter, cost functional characterizes the difference between known functions and the displacements obtained by equilibrium problem solving.
Keywords: contact, equilibrium, Timoshenko plate, beam, thin obstacle, non-penetration condition, minimization problem, variational inequality, rigidity parameter, optimal control.
@article{SEMR_2020_17_a86,
     author = {A. I. Furtsev},
     title = {The unilateral contact problem for a {Timoshenko} plate and a thin elastic obstacle},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {364--379},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a86/}
}
TY  - JOUR
AU  - A. I. Furtsev
TI  - The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 364
EP  - 379
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a86/
LA  - ru
ID  - SEMR_2020_17_a86
ER  - 
%0 Journal Article
%A A. I. Furtsev
%T The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 364-379
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a86/
%G ru
%F SEMR_2020_17_a86
A. I. Furtsev. The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 364-379. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a86/

[1] H. Lewy, “On a variational problem with inequalities on the boundary”, J. Math. Mech., 17:9 (1968), 861–884 | MR | Zbl

[2] H. Lewy, “On the coincidence set in variational inequalities”, J. of Differ. Geom., 6 (1972), 497–501 | MR | Zbl

[3] J. Frehse, “On Signorini's problem and variational problems with thin obstacles”, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV, 4 (1977), 343–362 | MR | Zbl

[4] L.A. Caffarelli, “Further regularity for the Signorini problem”, Commun. Partial Differ. Equations, 4:9 (1979), 1067–1075 | MR | Zbl

[5] I. Athanasopoulos, L.A. Caffarelli, “Optimal regularity of lower-dimensional obstacle problems”, J. Math. Sci., 132:3 (2006), 274–284 | MR | Zbl

[6] I. Athanasopoulos, L.A. Caffarelli, S. Salsa, “The structure of the free boundary for lower dimensional obstacle problems”, Am. J. Math., 130:2 (2008), 485–498 | MR | Zbl

[7] A. Petrosyan, H. Shahgholian, N.N. Ural'tseva, Regularity of free boundaries in obstacle-type problems, American Mathematical Society, Providence, 2012 | MR | Zbl

[8] B. Schild, “A regularity result for polyharmonic variational inequalities with thin obstacles”, Ann. Sc. Norm. Super. Pisa, Sci., IV, 11:1 (1984), 87–122 | MR | Zbl

[9] B. Schild, “On the coincidence set in biharmonic variational inequalities with thin obstacles”, Ann. Sc. Norm. Super. Pisa, Sci., IV, 13:4 (1986), 559–616 | MR | Zbl

[10] N.N. Ural'tseva, “Regularity of solutions of variational inequalities”, Russi. Math. Surv., 42:6 (1987), 191–219 | Zbl

[11] N.N. Ural'tseva, “An estimate of the derivatives of the solutions of variational inequalities on the boundary of the domain”, J. Sov. Math., 45:3 (1989), 1181–1191 | Zbl

[12] N. Guillen, “Optimal regularity for the Signorini problem”, Calc. Var. Partial Differ Equ., 36:4 (2009), 533–546 | MR | Zbl

[13] N. Garofalo, M.S.V. Garcia, “New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients”, Adv. Math., 262 (2014), 682–750 | MR | Zbl

[14] H. Koch, A. Rüland, W. Shi, “The variable coefficient thin obstacle problem: Carleman inequalities”, Adv. Math., 301 (2016), 820–866 | MR | Zbl

[15] A.M. Khludnev, K.H. Hoffmann, N.D. Botkin, “The variational contact problem for elastic objects of different dimensions”, Sib. Math. J., 47:3 (2006), 584–593 | MR | Zbl

[16] A.I. Furtsev, “Differentiation of energy functional with respect to delamination's length in problem of contact between plate and beam”, Sib. Electron. Mat. Izv., 15 (2018), 935–949 | MR | Zbl

[17] A. Khludnev, G. Leugering, “Unilateral contact problems for two perpendicular elastic structures”, Z. Anal. Anwend., 27:2 (2008), 157–177 | MR | Zbl

[18] A. Khludnev, A. Tani, “Unilateral contact problem for two inclined elastic bodies”, Eur. J. Mech. A, Solids, 27:3 (2008), 365–377 | MR | Zbl

[19] T.A. Rotanova, “Unilateral contact problem for two plates with a rigid inclusion in the lower plate”, J. Math. Sci., 188:4 (2013), 452–462 | MR | Zbl

[20] N.V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates”, J. Appl. Ind. Math., 4:4 (2010), 526–538 | MR | Zbl

[21] A.I. Furtsev, “On contact between a thin obstacle and a plate containing a thin inclusion”, J. Math. Sci., 237:7 (2019), 530–545 | MR | Zbl

[22] A.I. Furtsev, “A contact problem for a plate and a beam in the presence of adhesion”, J. Appl. Ind. Math., 13:2 (2019), 208–218 | MR | Zbl